

zur TA-BL/P Geräteserie

Ab Software Version 4.14

С	Mode	Para	Parameter name	Value	Unit	C
	1/02	MAXS	Maximum Speed	0	1/min	
	1/03	MINS	Minimum Speed	0	1/min	
	1/04	PRST1	Preset Speed (or Ratio) 1	0		
	1/05	PRST2	Preset Speed (or Ratio) 2	0		
)	1/06	PRST3	Preset Speed (or Ratio) 3	0		10
	1/07	IL1Q	Current Limit 1st Quadrant	0,0	A	~
	1/08	4Qen	4Q Operation Enabled	0		
)	1/09	IL4Q	Current Limit 4th Quadrant	0,0	A	10
_	1/10	RAMP	Select Ramp Mode (Jump, Lin., s)	0		1
	1/11	ACCEL	Acceleration Time	0,0	S	
_	1/12	DECEL	Deceleration Time	0,0	S	1 ~
)	1/13	LeaDe	Leaded Deceleration	0		
	1/14	BraDe	Wait With HOLD for 0.5s Using a Brake	0		
	1/15	DelOf	Turn Regulator off if Analog Input is 0	0		
)	1/16	P AMP	Proportional Amplifier for Speed	0	8	10
	1/17	I AMP	Integral Amplifier for Speed	0	%	
	1/18	YIOP	Limit Integral Part for Speed	0	1/min	
)	1/19	Save	Save Parameter to EEPROM	0		10
_	2/02	Stdrd	Load Standard Parameter	0		1
	2/03	RATSP	Motor rated Speed (BL-N-motors lower speed)	0	1/min	
_		POLES	Poles of Motor	0		1
)	2/05	PPR	Pulses per Revolution	0		
	2/06	MRACU	Motor Rated Current	0,0	A	
	2/07		Motor Peak Current (Limits IL10/IL40)	0,0	A	١.
)	2/08		Over current time (for n < 300 rpm)	0	S	10
	2/09		Select Ramp A or B	0		
	2/10		Acceleration Time B	0,0	S	
)	2/11	DEC B	Deceleration Time B	0,0	S	10
	2/12	PhAdv	Phase Advance	0		-
	2/13		Phase Advance at Rated Speed	0	%	
			Phase Advance at Max Speed	0	%	10
7	2/15	INCR		0		1
		DECR	-	0		
_	2/17		Fine Adjustment, 1/4 RPM	0		1
0	2/18		Switch at this Speed	0	1/min	
	2/19	IL20		Ō	S	
	2/20	CodO	Fixed Function for Digital Outputs	Ō	-	
)	2/21		Select Revers by Negative rated value	0		10
	2/22	4mA	Analoginput 1: 0-20mA / 4-20mA	0		
	2/23	CLT1	Torque Limit Time Constant	0,00	s	
)	2/24		Undervoltage Time	0,0	S	10
	2/25	OV 40	Overvoltage 40	0	V	1,
	2/26	PTQL	Programable Torque limit	0,0	8	
\	2/27		Reserved register	0	-	10
)	3/02	SRES	Input Selection Reset	0		
	3/02	SRUN	Input Selection Run	0		
_	3/03	SPRS1	Input Selection Run Input Selection Preset 1	0		-
)	3/04	SDIR	Input Selection Fieset 1 Input Selection Direction (Master)	0		
	3/05	SHOLD	Input Selection Birection (Master) Input Selection Hold	0		
	3/00	SPRS2	Input Selection Freset 2	0		
\circ	3/07	SMOT	Input Selection Fleset 2 Input Selection Motorpoti	0		

Inhaltsverzeichnis

1.0	Mul	tifunktionale Bedieneinheit PG 3000	. 3
	1.1	Lageplan PG 3000	. 3
		1.1.1 Technische Daten PG 3000	. 3
	1.2	Handhabung der Bedienelemente	
		1.2.1 Allgemein	
		1.2.2 Bedienelemente	
		1.2.3 LCD-Display	
	1.3	Istwerte-Menü	6
		1.3.1 Struktur des VAL-Menüs	
	1 1		
	1.4	Parameter-Menü	
	1.5	Motor-Steuerungs-Menü	
	1.5	1.5.1 Struktur des CTRL-Menüs	
	1.6	SmartCard-Menü	
	1.0	1.6.1 Struktur des CARD-Menüs	
		1.6.2 Funktionen des SmartCard-Menüs	
	1.7	Störungen	
		1.7.1 Fehlermeldungen des Regelgerätes	
		1.7.2 Bedienfehler am PG 3000 (keine Fehlerreaktion seitens des Regelgerätes)	. 10
		1.7.3 Fehler bei SmartCard-Betrieb (keine Fehlerreaktion seitens des Regelgerätes)	. 10
2.	Bes	chreibung der Parameter	. 11
	2.1	Parametergruppe 1	
	2.2	Parametergruppe 2	
	2.3	Parametergruppe 3	
	2.4	Parametergruppe 4	
3.	Pos	itionierung mit TA-BL/P Regler	. 46
	3.1	Positionsvorgabe (Soll-Position)	
	3.2	Positionserfassung (Ist-Position)	
	3.3	Hoch- und Runterlaufkurven	
	3.4	Vorgehensweise bei der Positionierung	
	•	3.4.1 Festlegung	
		3.4.2 Referenzfahrt	
		3.4.3 Positionierungsfreigabe 3/79, Profibus Nr. 217 Bit 7	
		3.4.4 Resetposition 3/76, Profibus Nr. 217 Bit 12	
		3.4.5 Bestimmung der Drehrichtung 3/77, Profibus Nr. 217 Bit 13	
		3.4.6 Gehe zur ersten Position 3/74, Profibus Nr. 217 Bit 8	
		3.4.7 Gehe zur Endposition in Slavebetrieb 3/13, Profibus Nr. 87 Bit 6	
	3.5	Positionierung durch die Änderung der Soll-Position	
	3.6 3.7	Grafische Darstellung Einfache Positionierung	
_			
4.		ersichtstabellen Parameter	
	4.1	Parametergruppe 1	
	4.2	Parametergruppe 2	
	4.3	Parametergruppe 3	
	4.4	Parametergruppe 4	
	4.5	Parameter zur Option Positionierung	. 58


Hinweis

Diese Parameter-Beschreibung erläutert die einzelne Parameter der Antriebsgeräteserie TA-BL/P ausführlich. Sie unterliegt daher den gleichen Sicherheitsbedingungen wie die TA-BL/P Inbetriebnahme und Einstellanleitung. Die Vorsichtsmaßnahmen und Warnungen in der TA-BL/P Inbetriebnahme und Einstellanleitung sind bei der Bedienung des Gerätes unbedingt zu beachten. Die vorliegende Parameter-Beschreibung ersetzt die TA-BL/P Inbetriebnahme und Einstellanleitung nicht.

1.0 Multifunktionale Bedieneinheit PG 3000

1.1 Lageplan PG 3000

Pos.	Bezeichnung	Funktion
1	LCD-Anzeigefeld	140 Segmente, grün/rot hinterleuchtet
2	Pfeiltaste abwärts	Zurückbewegung (Rollieren) innerhalb der Menüstruktur
3	Pfeiltaste aufwärts	Vorwärtsbewegen (Rollieren) innerhalb der Menüstruktur
4	Taste stop/return	Stoppen (Menü CTRL), Abbrechen oder gewähltes Menü verlassen
5	Taste start/enter	Starten (Menü CTRL), Bestätigen oder Menü auswählen
6	SmartCard	SmartCard-Datenspeicher, Speicherung der Geräteeinstellung
7	Anschlußkabel	Länge maximal 0,30m

1.1.1 Technische Daten PG 3000

Abmessungen (BxHxT)	62x158x21 mm
Gewicht	100 g
Schutzart	VBG4, IP20
Umgebungstemperatur	040 °C

1.2 Handhabung der Bedienelemente

1.2.1 Allgemein

Nach dem Einschalten der Netzspannung führt das Gerät einen Selbsttest durch (Display rot hinterleuchtet).

Das TA-BL/P... Regelgerät schließt diesen mit direktem Sprung auf den aktuellen Wert der eingestellten Istwertanzeige (Parameter 4/09) ab (Display grün hinterleuchtet).

Der Menüzweig VAL ist aktiv. Mit zweimaligem Antippen der **stop/return**-Taste wechselt die Anzeige auf **MENU** und eröffnet die Anwahl weiterer Menüzweige.

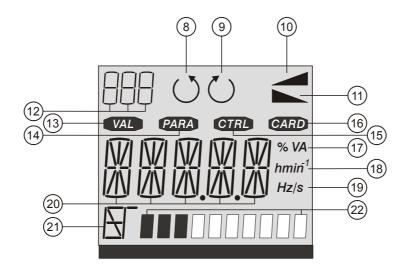
Menüzweig	Beschreibung
VAL	Istwerte anzeigen
PARA	Parametereinstellung verändern (parametrieren)
CTRL	Motor steuern über das PG 3000 Handprogrammiergerät
CARD	Geräteeinstellung laden/speichern mit der SmartCard

1.2.2 Bedienelemente

Die Pfeiltasten dienen zur Auswahl von Menüzweigen und einzelnen Parametern und ermöglichen deren Veränderung. Einmal angetippt bewirken sie einen Sprung zum nächsten Menüzweig oder Parameter oder die kleinstmögliche Veränderung eines Parameterwertes.

Wird eine Taste festgehalten, erfolgt ein automatischer Durchlauf (rollieren), der mit dem Loslassen der Taste gestoppt wird.

Mit der **start/enter**-Taste werden Menüzweige oder Parameter aufgerufen und Änderungen gespeichert.



1.2.3 LCD-Display

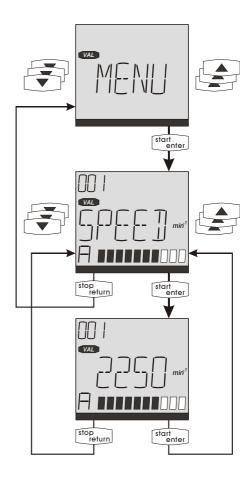
Pos.	Bezeichnung	Funktion
8	Drehrichtung links	Kontrollanzeige für Ausgangsdrehfeld, Linkslauf aktiv
9	Drehrichtung rechts	Kontrollanzeige für Ausgangsdrehfeld, Rechtslauf aktiv
10	Beschleunigungsrampe	Kontrollanzeige, während der Beschleunigung aktiv
11	Bremsrampe	Kontrollanzeige, während des bremsens aktiv
12	3-stellige Ziffernanzeige	7-Segment-Anzeige für Drehzalistwerte in ‰ und Parameter Nr.
13	VAL-Menü	Istwerte anzeigen, z.B. Drehzahl, Strom, Liniengeschwindigkeit usw.
14	PARA-Menü	Parametereinstellung verändern
15	CTRL-Menü	Motor steuern über das PG 3000 Handprogrammiergerät
16	CARD-Menü	Geräteeinstellung laden/speichern mit der SmartCard
17	Phys. Einheit zu Pos.20	zeigt %, V, A, VA an mit automatischer Zuordnung
18	Phys. Einheit zu Pos.20	zeigt h, 1/min an mit automatischer Zuordnung
19	Phys. Einheit zu Pos.20	zeigt Hz, s, Hz/s an mit automatischer Zuordnung
20	5-stellige Ziffernanzeige	15-Segment-Anzeige für Parameter-Namen und -Wert.
21	Bargraph-Bezeichnung	zeigt Formelbuchstaben bzw. Phys. Einheit zu Pos.22 an
22	10-stelliger Bargraph	zeigt Parameterwerte an, z.B. Drehzahl, Strom - (Parameter 4/10)

5

1.3 Istwerte-Menü

1.3.1 Struktur des VAL-Menüs

Mit den Pfeiltasten den Menüzweig VAL auswählen.


Mit dem Bestätigen durch die **start/enter**-Taste erfolgt der Wechsel in das Istwerte-Menü.

Mit Hilfe der Pfeiltasten kann jetzt der gewünschte Istwert ausgewählt werden, der im Display erscheinen soll. Die vorhandenen Istwerte sind der untenstehenden Tabelle 8.3.2 zu entnehmen.

Im gezeigten Beispiel wurde der Istwert **SPEED** (Drehzahlistwert) gewählt.

Durch das Tippen auf die **start/enter-**Taste wird der momentane Istwert angezeigt.

Mit dem Antippen der **start/enter-**Taste oder der **stop/ return-**Taste kommen Sie wieder in die Istwertauswahl zurück.

1.3.2 Istwerte

Parameter	Display- anzeige	Bezeichnung	Einheit	Anzeige- bereich
0/01	SPEED	Motordrehzahl	min ⁻¹	0 - 6000
0/02	CURR	Strom	А	0.0 - 3000.0
0/03	LSPD	Produktgeschwindigkeit	-	0 - 30000
0/04	LSP01	Produktgeschwindigkeit	-	0.0 - 3000.0
0/05	LSPD2	Produktgeschwindigkeit	-	0.00 - 300.00
0/06	POSLO	Position (low)	-	0 - 65535
0/07	POSHI	Position (high)	-	0 - 65535
0/08	LEAD	Leitdrehzahl	min ⁻¹	0 - 6000
0/09	SW	Software Version	-	0 - 9999
0/10	BUSV	(BUSS) Zwischenkreisspannung	V	0 - 9999

1.4 Parameter-Menü

1.4.1 Struktur des PARA-Menüs

Mit den Pfeiltasten den Menüzweig PARA auswählen.

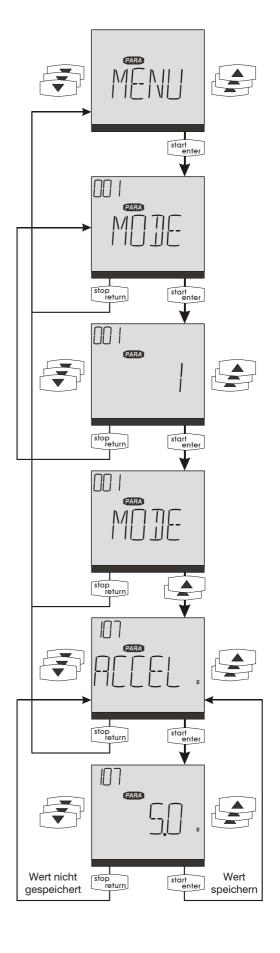
Mit dem Bestätigen durch die **start/enter-**Taste erfolgt der Wechsel zur Parameterebene und die Anzeige wechselt auf **MODE**.

Als erstes muß die Parametergruppe (MODE) mit der gearbeitet werden soll ausgewählt werden.

Durch Antippen der **start/enter-**Taste wird die momentan eingestellte Parametergruppe angezeigt.

Mit Hilfe der Pfeiltasten kann jetzt zu eine anderer Parametergruppe gewechselt werden.

Mit dem Antippen der **start/enter**-Taste wird die ausgewählte Parametergruppe bestätigt und die Anzeige wechselt wieder auf **MODE**.


Jetzt können Sie sich mit Hilfe der Pfeiltasten durch die zuvor eingestellte Parametergruppe (MODE) bewegen.

Mit der ↑ -Taste blättern (rollieren) Sie vorwärts durch die Parameterliste - mit der ↓ -Taste rückwärts.

Wenn Sie den Parameter Ihrer Wahl erreicht haben (im Beispiel **ACCEL**), drücken Sie die **start/enter**-Taste um den momentan eingestellten Wert des Parameters

Mit Hilfe der Pfeiltasten können Sie jetzt den Wert verändern. Durch Drücken der **start/enter**-Taste wird der neu eingestellte Wert übernommen.

Mit der **stop/return**-Taste können Sie jederzeit den Vorgang abbrechen. Es bleibt der zuletzt gespeicherte Wert erhalten.

anzuzeigen.

1.5 Motor-Steuerungs-Menü

1.5.1 Struktur des CTRL-Menüs

Mit den Pfeiltasten den Menüzweig CTRL auswählen.

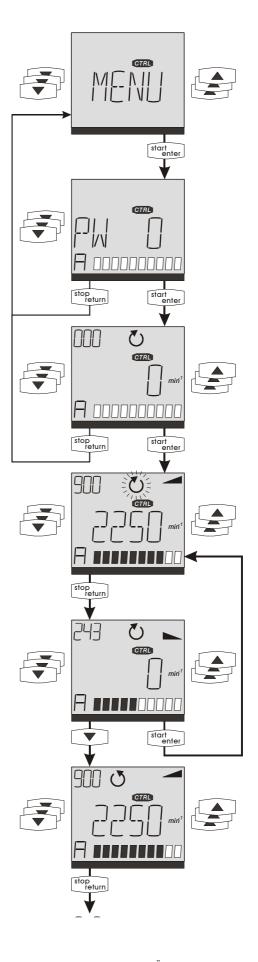
Mit dem Bestätigen durch die **start/enter-**Taste erfolgt der Wechsel zur Passworteingabe und die Anzeige wechselt auf **PW**.

Geben Sie mit Hilfe der Pfeiltasten das Passwort ein und bestätigen Sie dieses mit der **start/enter**-Taste. (Werkseinstellung Passwort=111)

Jetzt können Sie einen Drehzahlsollwert durch Antippen der Pfeiltasten vorgebem (z.B. 2250min⁻¹).

Durch Antippen der **start/enter**-Taste beginnt die Drehrichtungsanzeige zu blinken und der Regler startet mit der eingestellten Beschleunigungsrampe bis auf den eingestellten Sollwert.

Der Drehzahlistwert wird zusätzlich in ‰ angezeigt (kleine Anzeige).


Mit Hilfe der Pfeiltasten können Sie den Sollwert verändern.

Mit dem Antippen der **stop/return**-Taste hört die Drehrichtungsanzeige auf zu blinken und der Regler fährt an der eingestellten Bremsrampe bis auf Drehzahl 0. (Bremsung nur bei 4Q- oder Servo-Betrieb)

Wenn Sie die Drehrichtung ändern möchten, müssen Sie mit den Pfeiltasten den Sollwert auf 0 stellen. Steht der Antrieb, drücken Sie die

◆ -Taste und die Drehrichtungsanzeige wechselt.

Jetzt können Sie wieder einen Sollwert vorgeben und mit der **start/enter**-Taste den Regler freigeben.

1.6 SmartCard-Menü

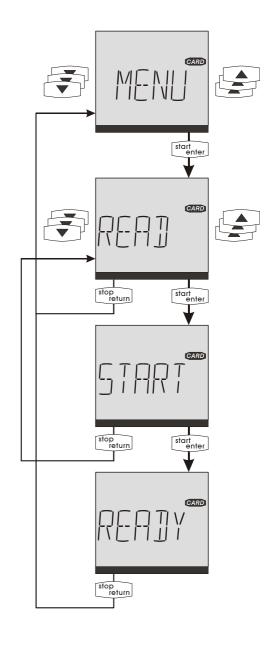
1.6.1 Struktur des CARD-Menüs

Mit den Pfeiltasten den Menüzweig CARD auswählen.

Mit dem Bestätigen durch die **start/enter**-Taste erfolgt der Wechsel in das SmartCard Menü.

Mit Hilfe der Pfeiltasten kann jetzt die gewünschte Funktion ausgewählt werden. Die vorhandenen Funktionen sind der untenstehenden Tabelle 8.6.2 zu entnehmen.

Im gezeigten Beispiel wurde die Funktion **READ** (Geräteeinstellungen von der SmartCard laden) gewählt


Durch das Tippen auf die **start/enter**-Taste wird die Funktion bestätigt und auf dem Display erscheint **START**.

Mit dem Antippen der **start/enter-**Taste wird die Funktion gestartet.

In unserem Beispiel werden jetzt die Geräteeinstellungen von der SmartCard in das TA-BL/P... Regelgerät geladen.

Wurde die Funktion fehlerfrei beendet, erscheint auf dem Display **READY**.

Durch das Drücken der **stop/return-**Taste kommen Sie wieder in die Menüauswahl zurück.

1.6.2 Funktionen des SmartCard-Menüs

Displayanzeige	Bezeichnung
READ	Geräteeinstellungen von der SmartCard in das Regelgerät laden.
WRITE	Geräteeinstellungen auf der SmartCard abspeichern.
LOCK	keine Funktion (reserviert)
UNLEK	keine Funktion (reserviert)

1.7 Störungen

1.7.1 Fehlermeldungen des Regelgerätes

Das Gerät besitzt eine interne Fehlerkennung für folgende Fehlerarten. Der Regler wird bei den auftretenden Fehlern gesperrt und am PG 3000 erscheint ein rotes Hintergrundlicht in der Anzeige.

Fehlerart	Anzeige	
renierart	Regler	PG3000
Motorübertemperatur (nur wenn Parameter 3/55 KLIXEN auf 1 gesetzt ist)	FO	MTEMP
Überstrom	Fl	ОС
Übertemperatur Leistungsteil	F2	TEMP
Unterspannung (wird nur ausgegeben wenn der Motor in Betrieb ist)	F3	UV
BUSS-Überspannung	FY	OV
Rippelstrom	F5	RC
Lagesensor HS1, HS2 oder HS3 (nur wenn Parameter 3/13 P05EN auf 1 gesetzt ist)	F6	POS
Drehzahlsensor (HS4 oder HS3)	F7	SPEED
Plausibilitätsfehler	F8	PFLT
Kurzschluß IGBT	F9	IGBT
Externer Fehler (nur Aktiv wenn im Parameter 3/22 55ER ein Digitaleingang zugeordnet wird)	ΕΊ	EXT

^{*)} Fehlermeldung wird nur ausgewertet bei Regler mit Steuerelektronik TA-BL-E/P98 Art.-Nr. 78320-0F

Alle Fehler lassen sich extern über Anschlußklemmen, über die Schnittstellen RS 485 und RS 422 oder am PG 3000 quittieren. Eine Fehlerquittung ist nur bei Reglersperre, stillstehendem Motor und nicht mehr anstehendem Fehler möglich.

Wird die Quittierung extern vorgenommen, so bleibt der letzte Fehler im PG 3000 solange gespeichert, bis er am PG 3000 quittiert wird. Diese Quittierung über PG 3000 kann auch im Betrieb erfolgen. Wird der Fehler im PG 3000 nicht quittiert, so bleibt der Hintergrund rot und ein neuer Fehler überschreibt den alten. Das bedeutet, im PG 3000 ist immer nur der letzte Fehler zu sehen.

1.7.2 Bedienfehler am PG 3000 (keine Fehlerreaktion seitens des Regelgerätes)

ATT1 Parameter verändern im online-Betrieb (bei laufendem Motor) nicht erlaubt.

ATT2 Motor steuern über das PG 3000 im online-Betrieb nicht erlaubt.

ATT3 Zugriff auf die SmartCard im online-Betrieb nicht erlaubt.

ATT4 System befindet sich im Fehlerzustand. Steuern über das PG 3000 nicht erlaubt.

ATT5 Motordaten müssen für gewählte Funktion vollständig sein.

ERROR Ungültiges Passwort

Fehler quittieren mit Druck auf die start/enter-Taste.

1.7.3 Fehler bei SmartCard-Betrieb (keine Fehlerreaktion seitens des Regelgerätes)

ERR91 SmartCard ist schreibgeschützt.ERR92 Fehler bei Plausibilitätskontrolle

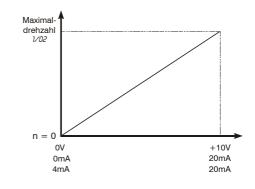
ERR93 SmartCard nicht lesbar, Regler/Servo-Regler-Typ falschERR94 SmartCard nicht lesbar, Parameter nicht kompatibel.

ERR96 Verbindung zur SmartCard unterbrochen.

ERR97 SmartCard - Daten ungültig

ERR98 Nicht genügend Speicherplatz auf der SmartCard.

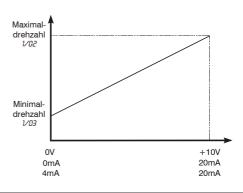
Fehler quittieren mit Druck auf die start/enter-Taste.


2. Beschreibung der Parameter

2.1 Parametergruppe 1

Standardparameter Einhe	inheit
<i>1000</i> mir	nin ⁻¹
10	<i>90</i> n

Siehe auch Parameter: 2/12, 2/13, 2/14


Die maximale Drehzahl des Motors wird durch diesen Parameter festgelegt. Ist der eingestellte Drehzahl größer als die Nenndrehzahl des Motors, ist zu beachten, daß beim überschreiten der Motornenndrehzahl das Drehmoment eventuell zurück geht. Bei Betrieb des Motors oberhalb der Motornenndrehzahl sollte die Phase advanced Funktion genutzt werden.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/03	MINS	Minimale Drehzahl	06000	0	min ⁻¹

Die minimale Drehzahl, die der Motor ohne Sollwert fährt, wird unter diesem Parameter eingestellt. Nach erfolgtem Start-Befehl fährt der Antrieb bei Sollwert 0 auf die hier eingestellte Drehzahl hoch.

Ist die eingestellte minimale Drehzahl größer als die maximale Drehzahl, wird sie auf die maximale Drehzahl begrenzt. Die eingestellte minimale Drehzahl wirkt bei analoger Sollwervorgabe, Motorpotifunktion oder Sollwertvorgabe über PG3000. Bei Sollwertvorgabe über eine Festdrehzahl oder PC ist die Minimale Drehzahlgrenze nicht aktiv.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit _
1/04	PRST1	Festdrehzahl 1 / Drehzahlverhältnis 1	064000	0	min ⁻¹ /-

Siehe auch Parameter: 3/04, 3/13, 4/12, 4/13

Die Funktion des Parameters 1/04 PRSTI ist abhängig von der Betriebsart des TA-BL/P Reglers als Leit- oder Folgeantrieb (Master oder Slave). Die Betriebsart ist in Parameter 3/13 55LRV festgelegt.

Wird der Antrieb als Leitantrieb (Master) betrieben, so kann in Parameter 1/04 PR571 die erste Festdrehzahl hinterlegt werden. Die Eingabe erfolg in min⁻¹. Die Drehzahl wird unabhängig der Einstellung in Parameter 1/04 PR571 immer durch die maximale Drehzahl (Parameter 1/02 PRX5) begrenzt.

Wird der Antrieb als Folgeantrieb (Slave) eingesetzt, bestimmt Parameter 1/04 PR571 in Verbindung mit dem Parameter 4/13 TRRN2 das erste Drehzahlverhältnis zum Leitantrieb (Master). Das Drehzahlverhältnis berechnet sich nach folgender Formel:

Drehzahlverhältnis = Parameter 1/04
Parameter 4/13

Beispiele:

1/04=20.000, 4/13=10.000 \Rightarrow Drehzahlverhältnis = 2 1/04=05000, 4/13=10.000 \Rightarrow Drehzahlverhältnis = 0,5

Die verschiedenen Festdrehzahlen bzw. Drehzahlverhältnisse werden entweder über die Digitaleingänge oder aber über einen Kommunikationsbus (z.B. Profibus-DP) angesteuert.

Die Klemmenbelegung zur Selektion der Festdrehzahlen wird in den Parametern 3/04 5PR51 und 3/01 5PR52 festgelegt.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/05	PRST2	Festdrehzahl 2 / Drehzahlverhältnis 2	064000	0	min ⁻¹ / -

Siehe auch Parameter: 3/04, 3/07

Die Funktionsweise ist analog zu Parameter 1/04.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/06	PRST3	Festdrehzahl 3 / Drehzahlverhältnis 3	064000	0	min ⁻¹ / -

Siehe auch Parameter: 3/04, 3/01, 3/13

Die Funktionsweise ist analog zu Parameter 1/04.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/07	IL1Q	Maximaler Strom bei mot. Betrieb (1Q)	0,1I-MAX	I-MAX	Α

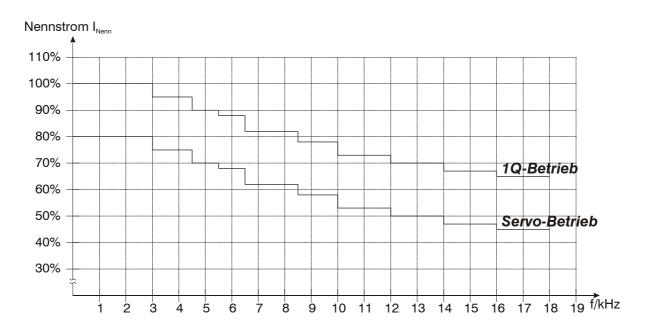
Siehe auch Parameter: 2/06, 2/07, 2/08, 4/02

Der maximale Ausgangsstrom (Motorstrom) ist auf den hier angegebenen Wert limitiert. Für den generatorischen Betrieb gilt der gesonderter Grenzstrom [Parameter 1/08 IL40].

Der maximal einstellbare Strom (max. Wert) ist softwareseitig in Abhängigkeit vom Motorspitzenstrom, Gerätenennstrom und in Abhängigkeit der eingestellten Taktfrequenz begrenzt.

Der maximale Strom in Parameter 1/07 IL10 entspricht je nach Regelgerät dem 1,2...1,5 fachen Gerätenennstrom. Bei Drehzahlen unter 300 min werden Ausgangsströme oberhalb Gerätenennstrom nach Ablauf der Überstromzeit in Parameter 2/08 0CTIff auf Gerätenennwert begrenzt.

Es ist nicht möglich Werte einzustellen, die größer sind wie 65% des Motorspitzenstrom (Parameter 2/01 MPECU).


Der Max. Strom ermöglicht eine Begrenzung des Motorstroms im 1. Quadranten (Motor-Betrieb). Erreicht der Ausgangsstrom den in diesem Parameter eingestellten Wert, verringert sich die Motordrehzahl in Abhängikeit der Last. Wird der maximale motorische Strom in der Beschleunigungsphase erreicht, verlängert sich die Hochlaufzeit entsprechend.

Die rote LED I-limit am TA-BL/P Display signalisiert das Erreichen der Stromgrenze. Weiterhin ist es möglich eine Meldung auf die programmierbaren Ausgänge zu geben, deren Belegung mit den Parametern 3/37...3/41 bestimmt wird.

Die Begrenzung des maximalen motorischen Stroms kann das Auslösen einer Störmeldung und Abschalten durch plötzlichen Überstrom z.B. aufgrund eines Kurzschluß' nicht verhindern.

Der max. Strom kann berechnet werden, indem der Gerätespitzenstrom (siehe Tabelle für technische Daten TA-BL/P Beschreibung im Kapitel 4.2.1) mit dem Faktor 0,82 multipliziert wird.

Der Geräte-Nennstrom ist in Abhängigkeit der Schaltfrequenz (Parameter 4/02 EFf/RX) nachstehend aufgeführt. Der max. Strom folgt der gleichen Kurvenform.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/08	YQEN	Generatorischer Betrieb, Freigabe	01	0	-

Siehe auch Parameter: 2/25, 1/09

Dieser Parameter aktiviert bzw. deaktiviert den generatorischen Betrieb des Antriebs.

Ist der Parameter auf 0 gesetzt, wird der generatorische Betrieb unterbunden und der Motor trudelt bei jeder Verzögerung aus, bis die neue Solldrehzahl erreicht ist.

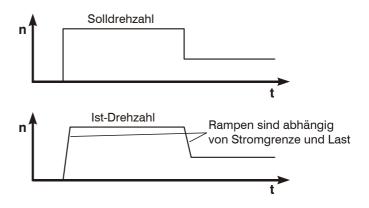
Bei "aktiven" Lasten, wie z. B. einem Hubwerk, kann der Antrieb durch die last sogar beschleunigt werden.

Ist der Parameter auf 1 gesetzt, so ist der generatorische Betrieb freigegeben. Es sollte dann jedoch eine externe Bremseinheit eingesetzt werden da der Antrieb ansonsten mit Überspannung im Zwischenkreis in Störung gehen kann. Es können zum Beispiel Bremseinheiten des Typs BC... der Firma TAE mit Bremswiderständen verwendet werden. Die generatorische Bremsleistung wird durch die generatorische Stromgrenze [Parameter 1/09 |L40] oder durch den Grenzwert für die DC-Bus Spannung [Parameter 2/25 0V_40] begrenzt.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/09	ILΥQ	Stromgrenze, Generatorbetrieb	0,1I-MRX	I-MAX	Α

Siehe auch Parameter: 1/08, 4/02

Wenn Sie den generatorischen Betrieb des Antriebs freigegeben haben [Parameter 1/08 40EM], begrenzt dieser Parameter den maximal zulässigen Strom bei generatorischem Betrieb im vierten Quadranten. Der maximal zulässige Reglerstrom bei generatorischem Betrieb ist von der Schaltfrequenz [Parameter 4/02 EFMRX], dem Motorspitzenstrom [Parameter 2/07 MPEEU] und der Gerätegröße abhängig. Den genauen Wert können Sie der technischen Tabelle TA-BL/P Beschreibung in Kapitel 4.2.1 entnehmen.

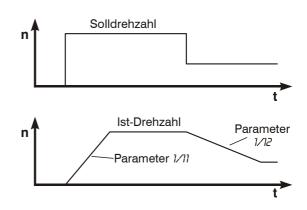

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/10	RAMP	Drehzahlrampentyp	02	1	-

Siehe auch Parameter: 1/11, 1/12, 2/10, 2/11

Es stehen verschiedene Rampenarten zur Verfügung, die für den Drehzahlsollwert verwendet werden. 0 = keine Rampe (Sprungfunktion), 1 = lineare Rampe, 2 = S-kurvenförmige Rampe

0 = keine Rampe wirksam

Die Motordrehzahl folgt dem Sollwert so schnell wie möglich. Die Beschleunigungszeiten sind nur von den wirksamen Massenträgheiten und dem zur Verfügung stehenden Strom abhängig. Die Beschleunigungszeiten sind von der motorischen Stromgrenze [Parameter 1/07 IL10] abhängig. Die Verzögerungszeiten von der generatorischen Stromgrenze [Parameter 1/08 40EN und 1/09 IL40]. Die maximale Verzögerung ist nur mit einer Bremseinheit möglich.

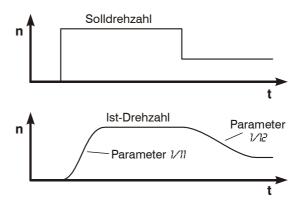


1 = lineare Rampe

Die Motordrehzahl folgt der Solldrehzahl immer über die programmierten linearen Rampen . [Parameter 1/11 RCCEL, 1/12 DECEL bzw. 2/10 RCCB, 2/11 DECB].

Die Beschleunigung vom Stillstand bis zur maximalen Drehzahl erfolgt in der eingestellten Rampenzeit.

Bedingt durch zu hohe Schwungmassen kann die Beschleunigungszeit verlängert werden. Bei nicht freigegebenem Generator Betrieb [Parameter 1/08 40EM], zu niedrigem Stromlimit [Parameter 1/08 IL40] oder zu niedrigem DC-Bus Spannungslevel [Parameter 0/240] kann sich die Verzögerungszeit verlängern.



2 = S-kurvenförmige Rampe

Die Motordrehzahl folgt der Solldrehzahl immer über die programmierten S-kurvenförmigen Rampen .

Die Beschleunigung vom Stillstand bis zur maximalen Drehzahl erfolgt in der eingestellten Rampenzeit. [Parameter 1/11 RCCEL, 1/12 DECEL bzw. 2/10 RCCB, 2/11 DECB]

Durch den Verschliff der Drehzahlrampe wird ein Überschwingen der Drehzahl verhindert und die Beschleunigung zu Beginn und am Ende jeder Drehzahländerung ist begrenzt, um die Mechanik zu schonen.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/11	ACCEL	Beschleunigungszeit A (Hochlauf)	0,1599,9	10,0	S

Siehe auch Parameter: 1/10

Einstellung der Beschleunigungszeit vom Stillstand bis auf maximale Drehzahl.

Falls der Antrieb während der Beschleunigung an die motorische Stromgrenze [Parameter 1/07 IL10] kommt, verlängert sich die Beschleunigung entsprechend.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/12	DECEL	Verzögerungszeit A (Runterlauf)	0,1599,9	10,0	S

Siehe auch Parameter: 1/10

Einstellung der Verzögerungszeit von maximaler Drehzahl bis zum Stillstand.

Falls der generatorische Betrieb [Parameter 1/08 40EN] nicht freigegeben ist, so trudelt der Antrieb aus, bis er die neue Solldrehzahl erreicht hat.

Falls der Antrieb während der Verzögerung an die generatorische Stromgrenze [Parameter 1/09 IL4Q] kommt, so verlängert sich die Verzögerung entsprechend.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/13	LERDE	Geführte Verzögerung bei Reglersperre	01	0	-

Siehe auch Parameter: 1/12, 2/11

Der Parameter bestimmt, ob der Antrieb bei Reglerfreigabe AUS austrudelt oder an einer Rampe bis auf Drehzahl Null geführt heruntergefahren wird.

- 0 = Nach Zurücknahme der Reglerfreigabe wird die Endstufe sofort gesperrt, d. h. der Motor wird nicht mehr bestromt und trudelt aus.
- 1 = Nach zurücknahme der Reglerfreigabe wird der Motor an der aktiven Verzögerungsrampe bis auf Drehzahl Null heruntergeführt. Die Endstufe wird erst bei Drehzahl Null abgeschaltet.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter Einheit
1/14	<i>BRADE</i>	0,5s Haltemoment bei n<10min ⁻¹	01	0 -

Siehe auch Parameter: 1/13, 4/15

0 = Haltemoment nicht aktiv

1 = Haltemoment aktiv.

Die Funktion wird nur bei geführter Verzögerung bei Reglersperre [Parameter 1/13 LERDE = 1] unterstützt.

Wenn der Antrieb nach Zurücknahme der Reglerfreigabe die Drehzahlgrenze von 10 min⁻¹ unterschritten hat, wird die Endstufe nicht sofort gesperrt, sondern der Motor noch für weitere 500ms bei Drehzahl Null und voller Momentenverfügbarkeit gehalten.

Bei einem Hubantrieb z. B. wird der Antrieb gestoppt und anschließend für 500ms gehalten, bis die mechanische Haltebremse eingefallen ist. Somit wird ein Durchsacken verhindert.

In Verbindung mit einer mechanischen Haltebremse muß bei geschlossener Haltebremse die Reglerfreigabe entzogen werden, da der Antrieb ansonsten bei der geringsten Regelabweichung mit maximalem Strom gegen die Bremse fährt.

Gruppe/Parameter Di	isplay Pa	arameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/15	<i>IELOF</i> R	Reglersperre bei Sollwert=0 & n=0	01	0	-

Parameter 1/15 DELOF bietet eine automatisierte Reglersperre.

Wenn der Parameter 1/15 DELDF auf 1 steht, wird die Reglersperre automatisch aktiviert, wenn sowohl die Soll-Drehzahl als auch die Ist-Drehzahl gleich Null sind. Das bedeutet, daß der Regler bei stehendem Motor nur über einen Drehzahl-Sollwert ungleich Null eingeschaltet wird und das sich der Antrieb automatisch wieder ausschaltet, nachdem Soll- und Ist-Wert wieder Null erreicht haben.

0 = automatische Reglersperre nicht aktiv

1 = automatische Reglersperre aktiv

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/16	P AMP	Drehzahlregler P - Verstärkung	0100	5	%

Siehe auch Parameter: 1/17

Dieser Parameter bestimmt den Verstärkungsfaktor des Drehzahlregelkreises und wird benötigt, um den Drehzahlregelkreis stabil abzugleichen.

Ist die Verstärkung zu klein, so reagiert der Antrieb insbesondere auf Störgrößen nur unzureichend. Bei zu großer Verstärkung wird der Antrieb instabil und reagiert ruckartig.

Die Verstärkung wird prozentual bezogen auf die größtmögliche Verstärkung, die erlaubt ist, angegeben.

$$PRMP = 1\%$$
 \Rightarrow $K_p = 1$
 $PRMP = 100\%$ \Rightarrow $K_p = 100$

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
ו/ו	I AMP	Drehzahlregler, Integral-Anteil	0100	Ч	%

Siehe auch Parameter: 1/15

Dieser Parameter bestimmt den integralen Anteil des Drehzahlreglers und sorgt dafür, daß im stationären Betriebsfall keine Regelabweichung bestehen bleibt.

Dieser Parameter bestimmt zusammen mit der Verstärkung die Stabilität des Antriebs.

Ist der wert zu klein, so benötigt der Antrieb sehr lange, um einem neuen Sollwert zu folgen bzw. Störgrößen werden nur langsam ausgeregelt. Bei zu großen Werten wird der Antrieb instabil.

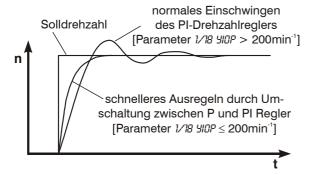
Der Integral-Antiel wird prozentual bezogen auf die kürzeste Integrationszeit angegeben.

$$I \text{ AMP} = 1\%$$
 \Rightarrow $T_{_{I}} = 25 \text{ ms}$
 $I \text{ AMP} = 100\%$ \Rightarrow $T_{_{I}} = 0,25 \text{ ms}$

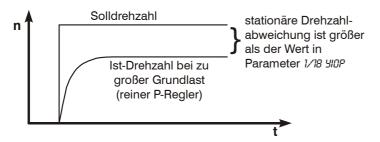
Gruppe/Parameter Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/18 YIOP	Wirkungsbereich I-Anteils beim n-Re	egler 1255	255	min ⁻¹

Siehe auch Parameter: 1/17

Der Integral-Anteil des Drehzahlreglers kann bei sehr dynamischen Applikationen als Funktion des Drehzahlfehlers (Differenz zwischen Drehzahlsoll- und Istwert) deaktiviert werden, um schnellere Reaktionen auf Sollwertänderungen und Störgrößen bei kleinerem Überschwingen zu bekommen.


Die Funktion kann aktiviert und deaktiviert werden.

0-200 min⁻¹ ⇒ Funktion aktiv >200 min⁻¹ ⇒ Funktion nicht aktiv


ACHTUNG: Diese Funktion nur bei sehr dynamischen Applikationen ohne hohe Grundlast verwenden, wie es zum Beispiel bei Schwungrädern oder Fahrwerken der Fall ist. Für Applikationen mit hoher Grundlast, wie zum Beispiel Extrudern ist diese Funktion nicht geeignet!

Das gezielte deaktivieren und aktivieren des Integral-Anteils des Drehzahlreglers ermöglicht ein extrem dynamisches Verhalten des Antriebs bei minimalem Überschwingen. Wenn der Parameter 1/18 ⅓10P einen Wert ≤ 200 min ¹ beinhaltet, ist die Funktion aktiv. Der Integral-Anteil des Drehzahlreglers ist dann so lange deaktiviert, bis der Drehzahlfehler kleiner wird, als der Wert in Parameter 1/18 ⅓10P. Dadurch kann die Verstärkung des Reglers vergrößert werden, ohne das der Antrieb extrem überschwingt oder instabil wird. Ab einem kleinen Drehzahlfehler wird der Integral-Anteil dann aktiviert, um die stationäre Regelabweichung zu eliminieren.

Ist die Grundlast der Antriebsmaschine jedoch so groß, daß der Drehzahlregler mit reinem P-Anteil den Drehzahlfehler nicht auf einen Wert unterhalb der Grenze in Parameter 1/18 5/10 regeln kann, so bleibt der Integral-Anteil inaktiv und es stellt sich eine stationäre Regelabweichung ein.

Verhalten der Ist-Drehzahl bei eingeschränktem und nicht eingeschränktem Wirkungsbereich des Drehzahlreglers und einer Lastmaschine mit geringer Grundlast.

Verhalten bei eingeschränktem Wirkungsbereich des I-Anteils beim Drehzahlregler und einer Lastmaschine mit zu großer Grundlast, so daß die stationäre Regelabweichung zu groß ist (z. B. Extruder).

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
1/19	SRVE	Parameter in EEPROM speichern	01	0	-

Siehe auch Parameter: 2/04

Alle Reglerparameter, ausschließlich des Parameters 2/04 Motorpole können On-Line während des Betriebs geändert werden. Sollen alle Parameter in den Festspeicher übernommen werden, **muß der Regler Inaktiv sein und Motor stehen. Die sieben Segment Anzeige am Regler signalisiert dies durch eine "0".**

Der Parameter 1/19 muß auf 1 gesetzt und anschließend mit der Enter Taste quittiert werden.

Der TA-BL/P Regler übernimmt aus sicherheitstechnischen Gründen nicht alle Änderungen automatisch beim Abschalten des Gerätes.

Beim Ausschalten des Gerätes gehen alle Änderungen verloren, die nicht zuvor manuell gespeichert wurden.

2.2 Parametergruppe 2

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/02	STORD	Standardparameter lesen	01	-	-

Siehe auch Parameter: 1/19

Wenn Sie den Wert auf "1" setzen und anschließend quittieren (Enter Taste betätigen) werden die in der Parameterliste angegebenen Standardparameter geladen. Sollen die Parameter in den Festspeicher übernommen werden, siehe Parameter 1/19 5RVE.

Gruppe/Parameter D	isplay	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/03 R	RATSP	Motor-Nenndrehzahl	06000	-	min ⁻¹

In diesen Parameter wird die Nenndrehzahl des Motors laut Typenschild eingestellt.

Bei BL-N-Typen, die kleinere Drehzahl angeben.

Falls Sie bei TAE Antriebstechnik ein komplettes Antriebspaket, bestehend aus Motor und Regler, erworben haben, sind alle Motordaten bereits im Regler eingestellt und optimiert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/04	POLES	Motor-Polzahl	232	-	-

In diesen Parameter wird die Polzahl des Motors laut Typenschild eingestellt.

- Die Motor-Polpaarzahl wird unbedingt für die elektronische Kommutierungsauswertung benötigt. Die Eingabe eines falschen Wertes führt zur Fehlfunktion des Antriebs.
- Dieser Parameter kann nicht während des Betriebs ("On-Line") geändert werden.

Falls Sie bei TAE Antriebstechnik ein komplettes Antriebspaket, bestehend aus Motor und Regler, erworben haben, sind alle Motordaten bereits im Regler eingestellt und optimiert.

Bei den von TAE gelieferten Motoren sind folgende Polpaarzahlen Standard:

Neodymmagnet Moto	ren Serie BL-N:	Ferritmagnet Motor	ren Serie BL:
RI -N-71 - RI -N-100	6 Pole	BI -71 - BI -160	4 Pole

BL-N-71 - BL-N-100 6 Pole BL-N-112 - BL-N-.... 8 Pole BL-180 - BL-315 8 Pole

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/05	PPR	Impulszahl des Motordrehzahlgebers x4	19999	-	-

In diesem Parameter wird die Impulszahl des Drehzahlgebers (Inkrementalgeber) eingestellt, der zur Drehzahlrückführung verwendet wird. Es muß der 4-fache Wert der Impulszahl des Gebers eingetragen werden, da der TA-BL/P Regler alle steigenden und fallenden Flanken der Spuren A und B zur Drehzahlbestimmung auswertet.

- Dieser Parameter kann nicht während des Betriebs ("On-Line") geändert werden.

Bei den TAE Motoren sind folgende Impulszahlen Standard:

BL-N-71...100
BL-71 - BL-160 :
$$30 \frac{\text{Impulse}}{\text{Umdrehung}} \times 4 = \underline{120}$$

BL-N-112... BL-180 - BL-315 :
$$60 \frac{\text{Impulse}}{\text{Umdrehung}} \times 4 = \underline{240}$$

TAE-Servomotoren :
$$600 \frac{\text{Impulse}}{\text{Umdrehung}} \times 4 = \underline{2400}$$

Falls Sie bei TAE Antriebstechnik ein komplettes Antriebspaket, bestehend aus Motor und Regler, erworben haben, sind alle Motordaten bereits im Regler eingestellt und optimiert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/06	MRACU	Motor-Nennstrom	1,03000,0	-	Α

In diesem Parameter wird der Motor-Nennstrom laut Motortypenschild eingestellt.

Falls Sie bei TAE Antriebstechnik ein komplettes Antriebspaket, bestehend aus Motor und Regler, erworben haben, sind alle Motordaten bereits im Regler eingestellt und optimiert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/07	MPECU	Motor-Spitzenstrom	1,03000,0	-	Α

Siehe auch Parameter: 1/07

In diesem Parameter wird der Motor-Spitzenstrom laut Motortypenschild eingestellt.

Achtung: Der Motor-Spitzenstrom muß zwingend richtig eingestellt werden. Bei einer falscher Einstellung dieses Parameters kann der Motor beschädigt werden!

Falls der Motor-Spitzenstrom zu hoch eingestellt wird, kann der Motor eventuell entmagnetisiert werden, wodurch die Momentenverfügbarkeit des Antriebspakets sinkt.

Falls der Motor-Spitzenstrom zu niedrig eingestellt wird, begrenzt der Regler den Motorstrom zu früh, was sich auf das verfügbare Motormoment auswirkt.

Falls Sie bei TAE Antriebstechnik ein komplettes Antriebspaket, bestehend aus Motor und Regler, erworben haben, sind alle Motordaten bereits im Regler eingestellt und optimiert.

Gru	uppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2,	/08	OCTIM	Überstromzeit	0200	80	S

Siehe auch Parameter: 2/05

Bei kurzfristigen, mechanischen Spitzenbelastungen bzw. bei hohen Anlaufmomenten ist der Antrieb in der Lage bis zu 200s ein höheres Motormoment zu erzeugen.

Die Überstromzeit beginnt abzulaufen, nachdem der Motorstrom den Motor-Nennstrom überschritten hat. Der Regler läßt bis zum Ablauf der Überstromzeit den maximalen Reglerstrom zu. Während dieser Zeit wird der Regler thermisch überlastet. Die Überlastfähigkeit liegt im Bereich zwischen 120% und 150% und ist Abhängig vom Regler. Nach Ablauf der Überstromzeit wird der Ausgangsstrom **nur dann** auf den Regler-Nennstrom reduziert, **wenn die Drehzahl kleiner als 300 min** beträgt.

Wenn der Regler-Nennstrom unterschritten wird, beginnt die Überstromzeit wieder heraufzulaufen, so daß anschließend wieder ein Überlaststrom zur Verfügung steht.

Beispiel: Einstellung 200s

Nachdem der Ausgangsstrom den Reglernennstrom überstiegen hat, beginnt die Überstromzeit zu laufen. Nach 200s wird der Ausgangsstrom auf den Regler-Nennwert begrenzt, um den Regler thermisch nicht zu überlasten. Wird der Reglernennstrom nun für 30s unterschritten, steht anschließend wieder für 30s der Überlaststrom zur Verfügung.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/09	SETRB	Auswahl Drehzahlrampe A oder B	06	0	-

Siehe auch Parameter: 1/11, 1/12, 2/10, 2/11, 2/18

Es stehen zwei unterschiedliche und unabhängig parametrierbare Drehzahlrampenpaare zur Verfügung. Mit Parameter 2/03 5ETRB wird festgelegt, wann Rampenpaar A bzw. B aktiv ist.

Hoch- und Runterlaufzeit sind getrennt voneinander einstellbar.

- 0 = Es ist immer Drehzahlrampenpaar A aktiv.
- 1 = Unterhalb der Drehzahlschwelle in Parameter 2/18 5UTR wird Drehzahlrampenpaar A verwendet und darüber Drehzahlrampenpaar B.
- 3 = Bei positiver Drehrichtung (cw, Rechtslauf) wird Drehzahlrampenpaar A und bei negativer Drehrichtung (ccw, Linkslauf) Drehzahlrampenpaar B verwendet.
- 4 = Es wird immer Drehzahlrampenpaar B verwendet.
- 5 = Bei Drehzahlvorgabe über Motorpoti wird Drehzahlrampenpaar B verwendet. Ansonsten immer Drehzahlrampenpaar A.
- 6 = Es wird mittels eines Digitaleingangs zwischen Drehzahlrampenpaar A und B umgeschaltet. (Die Zuordnung zu einer Klemme wird mittels Parameter 3/19 55ETB festgelegt)
- 7 = Wenn der Regler als Slave arbeitet, werden die Rampenzeiten RCCB Parameter 2/10 und DECB Parameter 2/11 wirksam

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/10	ACC B	Beschleunigungszeit B (Hochlauf)	0,1599,9	180,0	S

Siehe auch Parameter: 1/02, 1/10, 1/11, 1/12, 2/09, 2/11

Einstellung der Beschleunigungszeit vom Stillstand bis zur Motor-Maximaldrehzahl [Parameter 1/02 flax5]. Die Beschleunigungszeit wird in 0,1s Schritten angegeben.

Beispiel: Parameter 2/09=3

Rampen A

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/11	DEC B	Verzögerungszeit B (Runterlauf)	0,1599,9	180,0	s

Siehe auch Parameter: 1/02, 1/10, 1/11, 1/12, 2/09, 2/10

Einstellung der Verzögerungszeit von der Motor-Maximaldrehzahl [Parameter 1/02 flax5] bis zum Stillstand. Die Verzögerungszeit wird in 0,1s Schritten angegeben.

Gruppe/Parameter Display Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/12 PHRDV Phase advanced aktivieren	01	0	-

Siehe auch Parameter: 2/13, 2/14

0 = inaktiv1 = aktiv

Der Einsatz der Phase advanced Funktion ermöglicht es ab 20% Nennstrom und 300 min⁻¹ die elektronische Kommutierung des Stroms in Abhängigkeit der Drehzahl zu verschieben. Hierdurch ist es ermöglich, das Verhältnis von Motorstrom zu Drehmoment vom Stillstand bis zur Motor-Nenndrehzahl konstant zu halten.

Weiter ermöglicht es die Phase advanced Funktion den Motor über die Nenndrehzahl [Parameter 2/03 RRT5P] hinaus mit Konstantleistung zu betreiben. Das Verhalten des bürstenlosen Gleichstrommotors mit der Phase advanced Funktion ist oberhalb der Nenndrehzahl ähnlich dem Verhalten des Gleichstrommotors in der Feldschwächung.

Bei Neodymmagnetmotoren BL-N... kann die Nenndrehzahl mit Hilfe der Phase Advanced, auf die höhere auf dem Typenschild angebene Nenndrehzahl angehoben werden. Die Motorleistung steigt entsprechend mit ein.

Gruppe/Parameter Display Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/13 PHRDR Phase advanced bei Nenndrehzahl	0.99	30	%

Siehe auch Parameter: 2/12, 2/14

Mittels Parameter 2/13 PHRDR wird die Verschiebung der Kommutierung bei Motor-Nenndrehzahl festgelegt. Der Wert wird in % bezogen auf den maximal möglichen Verschiebungswinkel angegeben.

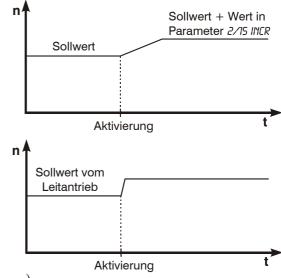
Der wirksame Verschiebungswinkel der Kommutierung ist von der Motordrehzahl des Antriebs abhängig.

Eine generelle Einstellung des Parameters kann nicht aufgezeigt werden, da der optimale Wert von der Streuinduktivität des Motors, der Polpaarzahl und anderen Motorparametern abhängt. Der angegebene Standardwert stellt einen Mittelwert dar, der aus Erfahrungen der Vergangenheit mit dem sehr breiten Anwendungsspektrum gefunden wurde.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/14	PHRDM	Phase advanced bei Maximaldrehzahl	0.99	50	%

Siehe auch Parameter: 2/12, 2/13

Die Verschiebung der elektronischen Kommutierung oberhalb der Motor-Nenndrehzahl wird mittels Parameter 2/14 PHRDIT festgelegt. Mittels einer gut justierten Phase advanced Funktion kann der Motor bis etwa zur 1,5-fachen Motor-Nenndrehzahl mit Konstantleistung betrieben werden.


Das verfügbare Drehmoment nimmt, wie beim Gleichstrom- oder Drehstrommotor, ab Nenndrehzahl mit zunehmender Drehzahl ab.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/15	INCR	Drehzahl- / Multiplikatoranhebung	09999	0	min ⁻¹ /-

Siehe auch Parameter: 3/11, 3/13

Die Funktion der Drehzahlanhebung ist davon abhängig, ob der Antriebs als Leitantrieb (Master) oder Folgeantrieb (Slave) läuft. Die Betriebsart Master bzw. Slave wird in Parameter 3/13 55LRV festgelegt.

- Betrieb als Leitantrieb (Master)
 Wenn der Antrieb als Leitantrieb läuft, wird bei aktiver Drehzahlanhebung der Drehzahlwert aus Parameter 2/15 INCR auf den gewählten Sollwert addiert.
- Betrieb als Folgeantrieb (Slave)
 Wird der Antrieb als Folgeantrieb betrieben, so wird
 bei aktiver Drehzahlanhebung das Drehzahlverhältnis zwischen Leit- und Folgeantrieb entsprechend der nach folgenden Formel angehoben.

Masterdrehzahl × $\frac{(TRRN1 \text{ Parameter 4/12} + INCR \text{ Parameter 2/15})}{TRRN2 \text{ Parameter 4/13}}$

Bei eingestellten und aktivierten Festverhältnissen wird TRANI durch das aktive Verhältnis ersätzt. Parameter 1/04 bis 1/06 bzw. Parameter 3/04 und 3/07.

Die Drehzahlanhebung wird mittels Parameter 3/11 51/16 aktiviert bzw. deaktiviert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/16	DECR	Drehzahl- / Multiplikationsabsenkung	0.9999	0	min ⁻¹ / -

Siehe auch Parameter: 3/12, 3/13

Die Funktion der Drehzahlabsenkung funktioniert analog zur Drehzahlanhebung [Parameter 2/15 INCR]

Masterdrehzahl ×
$$\frac{\left(7RRN1 \text{ Parameter 4/12} - DECR \text{ Parameter 2/16}\right)}{7RRN2 \text{ Parameter 4/13}}$$

Die Drehzahlabsenkung wird mittels Parameter 3/12 50EC aktiviert bzw. deaktiviert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardpa	rameter Einheit
2/17	FINE	Drehzahlfeinabstimmung	03	0	1/4 min ⁻¹

Falls der Antrieb eine feste Sollwertvorgabe bekommt, wie es z. B. bei Verwendung von Festdrehzahlen oder bei der Sollwertvorgabe über ein Bussystem der Fall ist, so kann der Sollwert nur in ganzen Umdrehungen pro Minute vorgegeben werden. Mittels der Feinabstimmung wird die Genauigkeit der Sollwertvorgabe um den Faktor vier verbessert, da der Sollwert dann mit einer Auflösung von ¼ Umdrehung genau vorgegeben werden kann.

Dem Sollwert wird der Wert von $\frac{\text{Parameter 2/17}}{4}$ Umdrehungen hinzu addiert.

Zum Beispiel: 1/4, 1/2, 3/4

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/18	SWTR	Drehzahlmeldung	106000	100	min ⁻¹

Siehe auch Parameter: 2/09, 3/31, 3/38, 3/39, 3/40, 3/41

Das Steuergerät verfügt über einen frei einstellbaren Drehzahlwächter. Es kann mittels Parameter 2/18 5 LTR ein Schaltpunkt frei gewählt werden zwischen 10 min und 6000 min. Die Information, ob die augenblickliche Drehzahl größer ist als der Schaltpunkt, kann entweder mittels eines Digitalausgangs extern oder intern z. B. für eine Rampenumschaltung verwendet werden.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/19	IL20	Meldeverzögerung, Stromgre	nze erreicht <i>19999</i>	1	S

Siehe auch Parameter: 3/37, 3/38, 3/39, 3/40, 3/41

Die TA-BL/P Regelgeräte sind in der Lage zu melden, wenn der Motorstrom den parametrierten Wert des Regler max. Stromes in Parameter 1/07 IL10 oder in Parameter 1/09 IL40 überschreitet. Diese Meldung wird mit der Zeitverzögerung in Parameter 2/19 IL20 über einen Digitalausgang ausgegeben.

Gruppe/Parameter Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/20 COD	7 Feste Konfiguration der Digital	ausgänge 01	0	-

Siehe auch Parameter:

Die feste Konfiguration der Digitalausgänge ermöglicht es eine detaillierte Fehlermeldung des TA-BL/P mittels der Digitalausgänge melden zu können. Ist der Parameter 2/20 0000 aktiv (Wert = 1), sind die Parameter der Digitalausgangsprogrammierung 3/37 bis 3/46 nicht aktiv und deren Einstellungen hat keine Auswirkungen auf die Funktion der Ausgänge. Die genaue Belegung der Digitalausgänge bei fester Konfiguration der Digitalausgänge können Sie der nachfolgenden Tabelle entnehmen.

Störung	43	44	45	47	48
Sammelstörung	-	-	-	0	-
Bereit	-	-	-	1	1
Drehzahl > 0	-	-	1	1	-
Stromgrenze erreicht	_	0	-	1	_
Kurzschluß	-	1	-	0	-
Fehler im Zwischenkreis	-	-	-	0	1
Übertemperatur	-	-	1	0	1

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/21	DIRAN	Drehrichtungsumkehr bei negSollwert	01	0	-

Siehe auch Parameter: 3/05

Dieser Parameter ermöglicht es eine Drehrichtungsumkehr bei negativem Analogsollwert zu aktivieren.

Ist der Parameter 2/21 DIRRN auf 0 gesetzt, läuft der Motor unabhängig des Vorzeichens des Sollwertsignals immer in positiver Drehrichtung (Betragsbildung).

Ist der Parameter 2/21 DIRRN auf 1 gesetzt, dann läuft der Motor bei positivem Analogsollwert im Rechts- und bei negativem Analogsollwert im Linkslauf. Wird die Drehrichtung mittels eines Digitaleingangs gewechselt, so verhält sich der Antrieb genau umgekehrt.

Nur möglich bei Verwendung von Analogeingang 1						
	Parameter 2/21 = 0		Paramete	er <i>2/21</i> = 1		
	Start Rechts	Start Links	Start Rechts	Start Links		
positiver Analogsollwert	Rechtslauf (CW)	Linkslauf (CCW)	Rechtslauf (CW)	Linkslauf (CCW)		
negativer Analogsollwert	Rechtslauf (CW)	Linkslauf (CCW)	Linkslauf (CCW)	Rechtslauf (CW)		

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/22	4MR	Analogeingang1 / 0-20mA oder 4-20mA	01	0	-

Bei analoger Sollwertvorgabe mittels Stromsollwert muß in Parameter 2/22 4/1/8 eingestellt werden, ob es sich um ein Signal mit 0-20mA oder 4-20mA handelt.

Die Einstellung des Parameters 2/22 4/1/18 kann der nachfolgenden Tabelle entnommen werden.

Sollwertvorgabe	Parameter 2/22 4MR
0-20mA	0
4-20mA	1

Bitte beachten Sie, daß die Dip-Schalter auf der Reglerplatine ebenfalls entsprechend dem Anschlußbild TA-BL/P Beschreibung in Kapitel 6.2.3 eingestellt werden müssen.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/23	CLT1	Drehmomentgrenze, Zeitkonstante	0,01300,00	0,01	S

Siehe auch Parameter: 3/50

Bei Vorgabe der Stromgrenze über einen Analogeingang oder digitale Werteinstellung wird der Stromsollwert über einen Tiefpaß geführt, um das Eingangssignal zu bedämpfen. Die Zeitkonstante des Tiefpaß wird mittels Parameter 2/23 CLT1 bestimmt. Desto kleiner der Wert in Parameter 2/23 CLT1 ist, desto dynamischer kann sich die Stromgrenze ändern und um so geringer ist auch die Unterdrückung von Störsignalen.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/24	UVTIM	Unterspgabschaltung, Verzögerung	0,03000,0	0,1	s

Bei den Regelgeräten TA-BL/P wird die Netzspannung nicht direkt überwacht, da die Steuerelektronik aus dem Zwischenkreis versorgt wird. Die Überwachung auf Netzunterspannung basiert auf der gemessenen Zwischenkreisspannung. Wenn die Zwischenkreisspannung unter die Unterspannungsgrenze absinkt, erkennt der TA-BL/P Regler

den Unterspannungsfehler. Der Unterspannungsfehler aktiviert sofort die interne Reglersperre und der Motor wird nicht mehr bestromt.

Die Fehlermeldung wird um die in Parameter 2/24 UVTIII parametrierte Zeit verzögert.

Ist die Zeit in Parameter 2/24 UVTIII abgelaufen, wird der Fehler gespeichert und muß entweder durch einen externen Resetbefehl oder aber durch Ein- und Ausschalten des Reglers manuell zurückgesetzt werden. Ist die Zeit in Parameter 2/24 UVTIII noch nicht abgelaufen, und die DC-Bus Spannung steigt wieder über die Unterspannungsgrenze an, so nimmt der Regler ohne Fehlerabschaltung automatisch wieder den regulären Betrieb

Die Unterspannungsgrenze ist fest eingestellt und kann nicht modifiziert werden.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/25	טע_40	Maximale Zwischenkreisspannung	1001500	900	V

Siehe auch Parameter: 1/08

Um den TA-BL/P Regler generatorisch betreiben zu können, muß dieser Betriebsfall mit dem Parameter 1/08 40EN freigegeben sein!

Bei Betrieb des TA-BL/P Regelgerätes im generatorischen Betrieb wird der Lastmaschine Energie entzogen, die im DC-Bus gespeichert und dann mittels einer Bremseinheit umgewandelt wird. Wenn keine Bremseinheit verwendet wird oder wenn die umgesetzte Leistung zu klein ist, steigt die Zwischenkreisspannung an. Wenn Sie die Überspannung erreicht hat, schaltet der TA-BL/P Regler hardwaremäßig mit dem Fehler "Überspannung im Zwischenkreis' ab, um die Leistungshalbleiter und die Zwischenkreiskondensatoren zu schützen.

Der Parameter 2/25 0V_40 ermöglicht den Betrieb des TA-BL/P Reglers im generatorischen Betrieb auch ohne eine externe Bremseinheit. Die Bremsleistung wird bei Erreichen der in Parameter 2/25 0V_40 eingestellten Spannung so weit reduziert, daß die Zwischenkreisspannung den eingestellten Wert nicht übersteigt. Bitte beachten Sie jedoch, daß sich hierdurch die Bremsrampe verlängert.

Beachten Sie auch, daß optional eingesetzte Bremseinheiten nicht richtig funktionieren, falls der Wert für die maximale Zwischenkreisspannung in Parameter 2/25 0V 40 zu klein eingestellt ist.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/26	PTQL	Drehmomentgrenze Programmierbar	0100	100	%

Das maximale Drehmoment kann mit diesen Parameter in prozentschritten begrenzt werden

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/27	MPTUL	Motorpoti Verhfaktor Begrenzung (Auf)	0100	0	%

Siehe auch Parameter: 2/28

Slave-Verhältnisänderungen "Aufwärts" mittels Motorpotentiometer können Prozentuell zum festeingestellten Verhältnis begrenzt werden.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/28	MPTDL	Motorpoti Verhfaktor Begrenzung (Ab)	0100	0	%

Siehe auch Parameter: 2/27

Dieser Parameter ist analog zu Parameter 2/27 allerdings abwärts.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
2/292/37		Siehe Kapitel 3. Positionierung mit TA	A-BL/P Regler		

2.3 Parametergruppe 3

Die Aktivierung der Parameter 3/02...3/24 erfolgt entweder über:

Kl. 2...13: Ist die Nummer einer Klemme (2-13) programmiert wird die Funktion durch dieser Digital

Eingang aktiviert.

oder Programmiergerät: Wird die Zahl 0 programmiert ist die Funktion immer Aus.

Wird die Zahl 1 programmiert ist die Funktion immer Ein.

Eingang low- oder high-Aktiv? siehe Parameter 3/25...3/26

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/02	SRES	Reset-Störung	013	2	-

Alle im Gerät gespeicherten Störmeldungen können mittels eines externen Siganls zurück gesetzt werden. Der Parameter 3/02 SRES legt fest, welche Klemme mit der Funktion Fehler-Reset belegt ist, bzw. deaktiviert diese Funktion.

Ein Fehlerzustand wird mittels der 7-Segment Anzeige des Gerätes gemeldet, indem die Anzeige einen der Fehler F0 .. F9 oder E1 anzeigt.

Eine Liste aller Fehlermeldungen finden Sie in der TA-BL/P Betriebsanleitung.

Ein Reset ist nur möglich bei Regler Inaktiv und bei Stillstand des Motors.

Bei Auftreten eines Fehlers wechselt die Anzeige des Keypads PG3000 von grün nach rot. Selbst nach einem Reset des Fehlers bleibt die Anzeige des Keypads jedoch rot, bis der Fehler am Keypad manuell zurück gesetzt wird.

Fehler können auch zurück gesetzt werden, indem das Regelgerät so lange vom Netz getrennt wird, bis alle Anzeigen erloschen sind.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/03	SRUN	Regler-Freigabe	013	3	-

Siehe auch Parameter:

Damit das TA-BL/P Regelgerät betrieben werden kann, muß eine Regler-Freigabe erfolgen. Parameter 3/03 SRUM belegt eine Klemme mit der programmierbaren Reglerfreigabe.

Außer der mit Parameter 3/03 SRUN programmierbaren Reglerfreigabe ist die Klemme 5 fest über die Hardware als Reglerfreigabe wirksam.

Um einen Fehler zurücksetzen zu können, muß der Antrieb stillstehen und die Reglerfreigabe muß deaktiviert sein!

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/04	SPRS1	Festdrehzahl 1 / Drehzahlverhältnis 1	013	Ч	-

Siehe auch Parameter: 1/04, 1/05, 1/06, 4/12

Das Regelgerät TA-BL/P verfügt über drei programmierbare Festdrehzahlen, die über zwei Digitaleingänge oder das Keypad angewählt werden können. Die nachstehende Tabelle erläutert die Auswahl der aktiven Festdrehzahl, oder des aktiven Drehzahlverhältnisses mit der oder dem Antrieb läuft.

5PR51 Parameter 3/04	5PR52 Parameter 3/04	Masterbetrieb	Slavebetrieb
deaktiviert	deaktiviert	standard Sollwert	TRAN1 Parameter 4/12
aktiviert	deaktiviert	Festdrehzahl 1 Parameter 1/04	Drehzahlverhältnis 1 Parameter 1/04
deaktiviert	aktiviert	Festdrehzahl 2 Parameter 1/05	Drehzahlverhältnis 2 Parameter 1/05
aktiviert	aktiviert	Festdrehzahl 3 Parameter 1/06	Drehzahlverhältnis 3 Parameter 1/05

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/05	SDIR	Drehrichtungsumkehr (Masterbetrieb)	013	5	-

Siehe auch Parameter: 3/20

Bei Betrieb als Masterantrieb ist die Drehrichtung fest definiert in Rechtslauf (CW) und Linkslauf (CCW). Standardrichtung ist Rechtslauf. Wenn die Drehrichtungsumkehr aktiviert wird, dreht der Motor im Linkslauf.

Bei Betrieb als Folgeantrieb (Slave-Betrieb) beachten Sie bitte Parameter 3/20 SLDIR.

Klemme 5 aktiviert grundsätzlich Reglerfreigabe (Hardware). Diese Funktion ermöglicht es den Regler mit einem Signal (Bit) auf linkslauf zu starten.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/06	SHOLD	Schnellhalt	013	8	-

Siehe auch Parameter: 1/08, 1/09, 4/05

Wird der Parameter 3/06 5H0L0 aktiviert, so wird ein Bremsvorgang mit maximal verfügbarem Drehmoment an der generatorischen Stromgrenze (Parameter 1/09 IL40) eingeleitet.

Um die Funktion nutzen zu können, muß der Antrieb jedoch als Servoregler (Parameter 4/05 5ERVD="1") oder 4Q Antrieb (Parameter 1/08 4QEN="1") betrieben werden und es sollte eine Bremseinheit verwendet werden (z.B. Bremschopper BC2.1 oder BC3.1). Wird auf eine Bremseinheit verzichtet, so beträgt das Bremsmoment nur ca. 3% des Nennmoments.

Falls der Antrieb nur im ersten Quadranten betrieben wird (Parameter 1/08 40EN="0"), so trudelt der Antrieb entsprechend der Schwungmasse der Arbeitsmaschine aus.

Gruppe/Para	meter Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/07	SPRS2	Festdrehzahl 2 / Drehzahlverhältnis 2	013	7	-

Siehe auch Parameter: 3/04, 2/09

Der Parameter 3/07 *SPRS2* dient zur Anwahl einer zweiten Festdrehzahl. Die Funktionsweise ist analog zu Parameter 3/04 *SPRS1*.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/08	SMOT	Motorpotifunktion EIN / AUS	013	8	-

Siehe auch Parameter: 3/09, 3/10, 2/09

Die Funktion des Motorpotis ist im Betrieb als Master- und Slaveantrieb unterschiedlich.

Motorpotifunktion im Betrieb als Leitantrieb (Masterantrieb)

- Bei der ersten Aktivierung der Motorpotifunktion, nachdem der Antrieb eingeschaltet worden ist (Netz Ein), übernimmt das Motorpoti den in diesem Moment aktuellen Drehzahl-Sollwert. Von dort aus kann die Drehzahl dann vergrößert oder verkleinert werden (siehe Parameter 3/09 und 3/10).
- Bei der Deaktivierung des Motorpotis wird der letzte Wert gespeichert, so daß dieser bei erneuter Aktivierung wieder zur Verfügung steht und verwendet wird.
- Wenn das Gerät spannungslos wird, so geht der letzte Motorpotiwert verloren.
- Zurücksetzen des Motorpotis auf "0"
 - Der Drehzahlsollwert des Motorpotis kann auf Null zurückgesetzt werden, indem bei aktiviertem Motorpoti "Up" (Parameter 3/03 5UP) und "Down" (Parameter 3/10 500UN) gleichzeitig aktiviert werden.
- Übernehmen der aktuellen Drehzahl für das Motorpoti
 - Wenn bei deaktiviertem Motorpoti "Up" (Parameter 3/03 5UP) und "Down" (Parameter 3/10 500UM) gleichzeitig aktiviert werden, so wird die aktuelle Drehzahl für das Motorpoti übernommen.
- Rampenauswahl, siehe Parameter 2/09.
- Eingestellte Rampenzeit bezieht sich auf 0-max-Drehzahl.

Motorpotifunktion im Betrieb als Folgeantrieb (Slaveantrieb)

- Beim Betrieb als Folgeantrieb dient das Motorpotentiometer zur Kontrolle des Drehzahlverhältnisses zum Leitantrieb.
- Wird die Motorpotifunktion erstmalig nach Einschalten des Antriebs aktiviert, so wird das aktuelle Drehzahlverhältnis übernommen. Von dort aus kann das Drehzahlverhältnis zum Leitantrieb dann vergrößert oder verkleinert werden (siehe Parameter 3/09 und 3/10).
- Bei gleichzeitigem aktivieren von "Up" (Parameter 3/09 5UP) und "Down" (Parameter 3/10 500UM) wird immer das fest eingestellte Drehzahlverhältnis übernommen.
- Rampenzeit bezieht sich auf: 0 64000 x Masterdrehzahl.

Wenn in dem Parameter 3/08 5\textit{70T} ein Wert zwischen ≥2 und ≤13 eingestellt ist, so stellt dieser Wert direkt die Klemme dar, die mit der Funktion belegt ist.

Wird eine "0" eingetragen, so ist die Funktion deaktiviert, wird eine "1" eingetragen, so wird die Funktion aktiviert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/09	SUP	Motorpotentiometer aufwärts	013	9	-

Siehe auch Parameter: 3/08

Der Wert des Motorpotis wird so lange vergrößert, wie der Parameter 3/03 5UP aktiviert ist. Beim Leitantrieb wird die Solldrehzahl vergrößert und beim Folgeantrieb das Drehzahlverhältnis.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/10	SDOWN	Motorpotentiometer abwärts	013	10	-

Siehe auch Parameter: 3/08

Der Wert des Motorpotis wird so lange verkleinert, wie der Parameter 3/10 500 WM aktiviert ist. Beim Leitantrieb wird die Solldrehzahl verkleinert und beim Folgeantrieb das Drehzahlverhältnis.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/11	SINC	Drehzahl- / Drehzahlverhältnisanhebung	013	11	-

Siehe auch Parameter: 2/15

Bei Aktivierung des Parameters 3/11 5INC wird beim Betrieb als Leitantrieb (Master) die Solldrehzahl um den Wert in Parameter 2/15 INCR angehoben.

Bei Betrieb als Slaveantrieb wird der Verhältnisfaktor um den Wert in Parameter 2/15 INCR angehoben.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/12	SDEC	Drehzahl- / Drehzahlverhältnisabs	enkung <i>013</i>	12	-

Siehe auch Parameter: 2/16

Bei Aktivierung des Parameters 3/12 5DEC wird beim Betrieb als Leitantrieb (Master) die Solldrehzahl um den Wert in Parameter 2/16 DECR abgesenkt.

Bei Betrieb als Slaveantrieb wird der Verhältnisfaktor um den Wert in Parameter 2/16 DECR abgesenkt.

Gruppe/Parameter Display Parameterbezeichnung V	Wertebereich	Standardparameter	Einheit
3/13 SSLRV Master- / Slavebetrieb	013	13	-

Siehe auch Parameter: 1/04, 2/15, 4/09, 4/10, 4/17

Der Parameter 3/13 55LRV bestimmt, ob der Antrieb als Master- oder Slaveantrieb betrieben wird. Wenn die diese Funktion deaktiviert ist, arbeitet der Antrieb als Master und wenn sie aktiviert ist als Slave.

Betrieb als Masterantrieb

- Erfolgt die Drehzahlvorgabe über die Analogeingänge (0-10V bzw. 0(4)-20mA), so entspricht das einem Drehzahlbereich von minimaler Drehzahl (Parameter 1/02 films) bis zur maximalen Drehzahl (Parameter 1/02 films).
- Die Festdrehzahlen werden mit dem Programmiergerät PG3000 oder am PC in min eingegeben. (Parameter 1/04 PRST1 .. 1/05 PRST3)
- Die direkte Drehzahlvorgabe mittels Programmiergerät PG3000 oder PC wird in min⁻¹ eingegeben.
- Die Geschwindigkeitsanhebung oder Absenkung wird in min eingegeben siehe Parameter 3/08, 2/15.

Betrieb als Slaveantrieb

- Der Betrieb als Slaveantrieb entspricht dem Betrieb als elektronisches Getriebe. D. h. der Antrieb folgt einem Leitantrieb mit einem fest vorgegebenen Drehzahlverhältnis, welches frei einstellbar ist.
- Der Leitsollwert wird bei Folgeantrieben immer in Form einer Frequenz vorgegeben, die proportional der Leitgeschwindigkeit ist. Der Leitsollwert kann alternativ als A/B Frequenz-Impulse mit 90° Versatz oder als A Frequenzimpuls+ Drehrichtungssignal an den Klemmen 33 - 35 gelesen werden (siehe auch Anschlußbild TA-BL/P Beschreibung im Kapitel 6.2.3).
- Die Drehzahlvorgabe über die Analogeingänge ist außer Funktion.
- Die Drehzahlverhältnisse werden mit dem Programmiergerät PG3000 oder am PC entsprechend der unten aufgeführten Formeln vorgegeben.
- Die Drehzahlverhältnisabsenkung bzw. Anhebung wird ebenfalls entsprechend der angegeben Formel angehoben bzw. abgesenkt. Siehe Beschreibung des Parameters 2/15, 3/08.
- Die Drehzahl des Antriebs wird immer auf maximale Drehzahl begrenzt
- Die Leitgeschwindigkeit wird mit dem Wert von Parameter 4/12 TRRN1 multipliziert und anschließend mit dem Wert von Parameter 4/13 TRRN2 dividiert und dann als Solldrehzahl verwendet.
- Bei Verwendung mehrerer fester Drehzahlverhältnisse wird die Leitgeschwindigkeit mit den Werten von Drehzahlverhältnis 1 3 multipliziert (Parameter 1/04 1/06)
- Parameter 4/17PPR fibestimmt die Anzahl der Pulse pro Umdrehung des Leitantriebs. Hierdurch wird zusätzlich auch die Anzeige der Geschwindigkeit des Leitantriebs ermöglicht.

Drehzahlverhältnis zwischen Master- und Slaveantrieb:

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/14	SSPER	Drehzahlistwertfehler unterdrücken	013	0	-

Die Überwachung des Drehzahlistwertgebers kann zur Fehlerlokalisation abgeschaltet werden. (z.B. externe EMV-Problemme Störimpulse auf Geberleitung).

Inaktiv (0) = Drehzahlistwertgeberüberwachung EIN

Aktiv (1) = Drehzahlistwertgeberüberwachung AUS

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/15	SSYNC	Winkelsynchron/Drehzahlsynchron	013	1	-

Siehe auch Parameter: 4/14

Bei Betrieb des TA-BL/P Reglers als Slaveantrieb sind zwei Betriebsmodi möglich:

Inaktiv = Winkelsynchron

Aktiv = Geschwindigkeitssynchron

- Bei der Winkelsynchronisation werden kurzfristige Drehzahlunterschiede (z.B. durch einen Laststoß) zwischen Leitund Folgeantrieb nachgeregelt.

Kann der Folgeantrieb dem Leitantrieb kurzfristig, z. B. durch einen Laststoß, nicht folgen so werden die verpaßten Pulse aufaddiert und später nachgeholt, so daß kein Winkelfehler zwischen Master- und Slaveantrieb entsteht. Die Position der Antriebe zueinander bleibt in dieser Betriebsart erhalten.

- Bei der Drehzahlsynchronisation wird der Slaveantrieb mit einem festen Drehzahlverhältnis zum Masterantrieb geregelt. Ein Winkelversatz, z. B. durch eine kurzfristige Belastung, wird nicht nachgeregelt.

Das Verhalten des Antriebs bei erreichen der Stromgrenze wird vom Parameter 3/15 555/11 nicht beeinflußt. Wie sich der Antrieb bei Erreichen der Stromgrenze verhält wird mit Parameter 4/14 LIMIT bestimmt.

Wenn Parameter 4/14 Lift den Wert 1 enthält, so werden verlorene Pulse bei Erreichen der Stromgrenze "vergessen" und nicht nachgeholt. Eine typische Anwendung sind zum Beispiel Antriebe an Endlosproduktionsanlagen.

Wird der Parameter 4/14 LIMIT auf den Wert 0 gesetzt, so werden "verlorene" Pulse, beim Erreichen der Stromgrenze aufaddiert, und baldestmöglich nachgefahren. Eine Typische Anwendung sind Positionierantriebe.

rdparameter Einheit	Standardparameter	Wertebereich	Parameterbezeichnung	Display	Gruppe/Parameter
-	0	013	Winkelkorrektur	SANG	3/16
	U	U13	Winkelkorrektur	SHIIU	3/16

Diese Funktion wird in der aktuellen Software noch nicht unterstützt.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/17	SICW	Endschalter in Uhrzeigersinn (CW)	013	0	-

Inaktiv = Endschalter Funktion Aus Aktiv = Endschalter Funktion Ein

Die Vorendschalterfunktion ermöglicht es Vorendschalter direkt in den TA-BL/P Regler einzulesen (z. B. für Hub- und Fahrwerke). Ist der Vorendschalter betätigt, stopt der Antrieb und kann dann auch nicht mehr auf Rechtslauf gestartet werden, bis der Endschalter nicht mehr betätigt ist.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/18	SICCW	Endschalter gegen Uhrzeigersinn (CCW)) <i>013</i>	0	-

Inaktiv = Endschalter Funktion Aus Aktiv = Endschalter Funktion Ein

Die Funktionsweise ist analog zu Parameter 3/17 5/CW, allerdings Linkslaufsperre.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/19	SSETB	Anwahl Rampe A oder B	013	0	-

Siehe auch Parameter: 2/09

Inaktiv = Rampenpaar A aktiv Aktiv = Rampenpaar B aktiv

Mittels des Parameters 3/19 55ETB kann zwischen den Drehzahlrampenpaaren A und B umgeschaltet werden.

Dieser Parameter ist nur aktiv, wenn der Parameter 2/09 SETRB = "6" (externe Rampenanwahl) eingestellt ist!

Gruppe/Parameter Dis	splay F	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/20 St	LDIR [Drehrichtungswechsel bei Folgeantrieben	013	0	-

Inaktiv = der Slave hat die gleiche Drehrichtung wie der Masterantrieb

Aktiv = der Slave dreht mit der invertierten Drehrichtung des Masterantriebs

Bei Betrieb des TA-BL/P Reglers als Folgeantrieb mit A/B Spurleitwert ist die Drehrichtung nicht fest definiert, da durch den Wechsel der Spuren A und B die Drehrichtung wechselt. Um Verdrahtungsaufwand und Änderungen an der Dokumentation zu sparen, kann die Drehrichtung invertiert werden.

Achtung:

Wird die Drehrichtung bei laufendem Motor gewechselt erfolgt dies mit max. Drehmoment

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/21	SECL	Externe Drehmomentgrenze	013	0	-

Siehe auch Parameter: 3/50

Inaktiv = interne Stromgrenze Aktiv = externe Stromgrenze

Wenn der Parameter 3/21 SECL auf aktiv ist, wird die Limitierung des Motorstroms als Funktion eines Analogsignals betrieben. Weitere Information finden Sie unter Parameter 3/50

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/22	SSER	Externe Fehlerabschaltung	013	0	-

Über den in Parameter 3/22 SSER festgelegten Digitaleingang kann eine externe Fehlerabschaltung erzeugt werden (z. B. Überlast des Motor-Fremdlüfters).

Das TA-BL/P Regelgerät behandelt diese Störabschaltung wie einen internen Fehler und sperrt den Regler. Das Display zeigt die Fehlermeldung "Ei" und das PG3000 zeigt "EXT" an.

Inaktiv (0) = Externe Fehlerabschaltung AUS
Aktiv (1) = Externe Fehlerabschaltung EIN

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/23	SSDC	Reglerendstufe Inaktiv	013	0	-

Für Sicherheitsanwendungen kann die Reglerendstufe deaktiviert werden.

Inaktiv (0) = Reglerendstufe EIN
Aktiv (1) = Reglerendstufe AUS

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/24	STLRP	M-Limit Analog / Programmierbar	013	0	-

Die Drehmomentbegrenzung kann über Analogeingänge oder mittels Software eingestellt werden.

Inaktiv (0) = Analog (siehe auch Parameter 3/50, 3/54, 2/23, und 3/21)

Aktiv (1) = Programmierbar (siehe auch Parameter 2/26 und 3/21)

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/2536	IPL213	Eingangslogik der Klemmen 2 bis 13	01	1	-

Die Polaritäten der digitalen Eingänge können durch die folgenden Parameter bestimmt werden (siehe. Parametern 3/02 bis 3/22). Ist das entsprechende Polaritätsbit einer Klemme gesetzt, dann ist die Klemme inaktiv und wird durch Anlegen einer Gleichspannung von (15 bis 30V) aktiviert. Bei einem nicht gesetzten Polaritätsbit einer Klemme gilt das Gegenteil. D.h., ist das entsprechende Polaritätsbit einer Klemme nicht gesetzt, dann ist die Klemme aktiv und wird durch Anlegen einer Gleichspannung von (15 bis 30V) deaktiviert (siehe Tabelle).

Digitale Eingänge Gleichspannung (15 bis 30V)	Polarität Digitale Eingänge	Funktion Parameter (3/02 bis 3/22)
0	0	aktiviert
0	1	deaktiviert
1	0	deaktiviert
1	1	aktiviert

Bemerkung:

Die Spannungspegel unter 3V gelten für die digitalen Eingänge als Low und über 8V als High. Da die digitalen Eingänge nur eine maximale Spannung von 30V vertragen, sollte die anzulegende Gleichspannung kleiner oder gleich diesem Wert sein.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/37	5048	Funktion Relais 1 (Klemme 48)	013	Ч	-

Siehe auch Parameter: 3/42

Die Funktion des Relaisausgang 1(Schließer) wird mittels Parameter 3/37 5048 festgelegt. Es stehen 9 verschiedene Belegungen zur Verfügung, die in der nachfolgenden Tabelle aufgeführt sind.

Einstellung	Funktion
0	nicht belegt
1	Sammel - Störung
2	Stromgrenze erreicht, verzögert
3	Drehzahl erreicht
4	Betriebsbereit
5	Betrieb
6	Drehzahlmeldung (siehe Parameter 2/18)
7	Drehzahl > 9min ⁻¹
8	Stromgrenze
9	Motornennstrom überschritten
10	Reserve
11	Motor in Position
12	Master Drehzahl erreicht (nur bei Positionierung)
13	Position überschritten

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/38	5047	Funktion Relais 2 (Klemme 47)	013	1	-

Siehe auch Parameter: 3/37, 3/43

Die Funktion des Relaisausgang 2 (Öffner) wird mittels Parameter 3/38 5047 festgelegt. Es stehen 9 verschiedene Belegungen zur Verfügung, die unter Parameter 3/37 5048 aufgeführt sind.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/39	50K45	Funktion Digitalausgang 1 (Klemme 45)	013	7	-

Siehe auch Parameter: 3/37, 3/44

Die Funktion des Digitalausgangs 1 (Optokoppler) wird mittels Parameter 3/39 50K45 festgelegt. Es stehen 9 verschiedene Belegungen zur Verfügung, die unter Parameter 3/37 5048 aufgeführt sind.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/40	50KYY	Funktion Digitalausgang 2 (Klemme 44)	013	2	-

Siehe auch Parameter: 3/37, 3/45

Die Funktion des Digitalausgangs 2 (Optokoppler) wird mittels Parameter 3/40 50K44 festgelegt. Es stehen 9 verschiedene Belegungen zur Verfügung, die unter Parameter 3/37 5048 aufgeführt sind.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit	
3/41	50K43	Funktion Digitalausgang 3 (Klemme 43)	013	8	-	

Siehe auch Parameter: 3/37, 3/46

Die Funktion des Digitalausgangs 3 (Optokoppler) wird mittels Parameter 3/41 50K43 festgelegt. Es stehen 9 verschiedene Belegungen zur Verfügung, die unter Parameter 3/37 5048 aufgeführt sind.

Gruppe/Parameter	Display Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/4246	P04843Logik der Ausgänge	01	-	-

In der Folgenden Tabelle kann die Logik der Relais- bzw. Optokopplerausgänge umgesetzt werden.

	Ausgänge	Parameter <i>3/42-45</i>		Relais bzw. Optokoppler	Standard- parameter
	Polais (öffnar) Kl. 48	P048	0	Inaktiv	1
	Relais (öffner) Kl. 48	F040	1	Aktiv	1
	Relais (schließer) Kl. 47	P047	0	Inaktiv	-
			1	Aktiv	1
In Parameter 3/37	Optokoppler (schließer) Kl. 45	P045	0	Inaktiv	1
ausgewählte Funktion Aktiv			1	Aktiv	'
	Ontokonnlar (achliaßer) Kl. 44	P044	0	Inaktiv	0
	Optokoppler (schließer) Kl. 44	FU44	1	Aktiv	U
	Optokoppler (schließer) Kl. 43	P043	0	Inaktiv	1
	Optokoppier (scrilleber) Kr. 43	P043	1	Aktiv	1

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/47	ROSEL	Funktion Analogausgang	12	1	-

Siehe auch Parameter: 3/12

0-10V = 0- max. Drehzahl (rechtslauf)

Der Parameter 3/47 ROSEL bestimmt die Belegung des Analogausgangs an Klemme 21.

Die Polarität des Analogausgangs kann mittels Parameter 3/72 invertiert werden.

Der Motorstrom steht ebenfalls an den Klemmen 0 und I zur Verfügung. (nicht programierbar)

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/48	RSEL1	Drehzahlsollwert mit Rampe	015	1	-

Siehe auch Parameter: 3/43

- 0= Funktion keinem Analogeingang zugeordnet
- 1 = Analogeingang 1 (Klemme 19)
- 2= Analogeingang 2 (Klemme 20)

Der Parameter 3/48 RSEL1 bestimmt bei Betrieb als Leitantrieb (Master) den Analogeingang für den Drehzahlsollwert vor dem Rampengenerator. Der Antrieb folgt jeder Solldrehzahländerung mit der aktiven Drehzahlrampe.

0- (-10V) siehe Parameter 2/21.

Dem hier gewählten Drehzahlsollwert wird hinter dem Rampengenerator noch der in Parameter 3/49 R5EL2 ausgewählte Drehzahlsollwert addiert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/49	RSEL2	Drehzahlsollwert ohne Rampe	015	0	-

Siehe auch Parameter: 3/48

- 0= Funktion keinem Analogeingang zugeordnet
- 1 = Analogeingang 1 (Klemme 19)
- 2= Analogeingang 2 (Klemme 20)

Parameter 3/49 R5EL2 bestimmt welchen Analogeingang ein Drehzahlsollwert ohne Hoch- Runterlauframpe zugeordnet wird

Der in Parameter 3/49 R5EL2 definierte Sollwert führt zu einer sofortigen Drehzahländerung mit max. Drehmoment am Motor.

Dem in Parameter 3/48 RSEL1 definierten Sollwert, wird hinter dem Drehzahlrampengenerator der in Parameter 3/49 RSEL2 definierte Drehzahlsollwert hinzu addiert.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/50	RSEL3	Sollwert, Drehmoment limit	015	0	-

0= Funktion keinem Analogeingang zugeordnet

- 1 = Analogeingang 1 (Klemme 19)
- 2= Analogeingang 2 (Klemme 20)

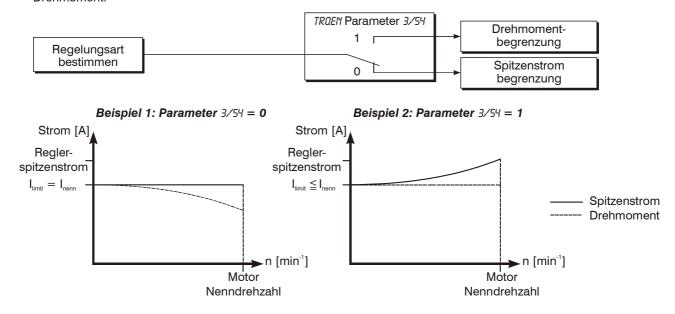
Der Parameter 3/50 R5EL3 bestimmt den Analogeingang für externe Drehmomentbegrenzung. Diese Funktion kann als Drehmomentenlimitierung verwendet werden, da beim bürstenlosen Gleichstromantrieb der Motorstrom in weiten Grenzen dem Drehmoment des Antriebs entspricht. Die erreichbare Drehmomentengenauigkeit hängt von dem benötigten Drehzahlstellbereich ab.

Der Eingang ist so skaliert, daß 10V bzw. 20mA (20mA nur mit Analogeingang 1 möglich siehe Anschlußbild TA-BL/P Beschreibung Punkt 6.2.3) der Limitierung des Motorstroms auf Gerätemaximalstrom entspricht.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/51	RSELY	Quelle max. Positionier-Drehzahl	015	0	-

Die maximale Drehzahl der Positionierung kann digital oder analog mit Parameter 3/51 eingestellt werden.

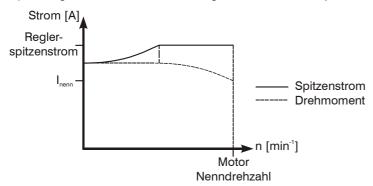
3/51 = 0 Digital = (2/34) Die maximale Drehzahl der Positionierung über Feldbussysteme 3/51 = 1 Analogeingang 1 Die maximale Drehzahl der Positionierung über Analogeingang 1 3/51 = 2 Analogeingang 2 Die maximale Drehzahl der Positionierung über Analogeingang 2


Gruppe/Parameter Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/52-53 RSELS	5-6 Reserve Analoganwendungen	015	0	-

Diese Parameter sind für einen späteren Einsatz reserviert und werden in der aktuellen Software noch nicht verwendet.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/54	TRQEN	Betrieb Drehmoment-Begrenzung	01	0	-

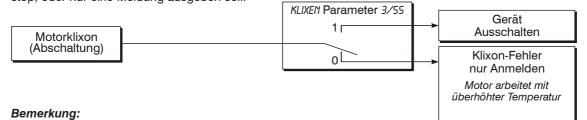
Siehe auch Parameter: 1/07


Parameter für das Ein- und Ausschalten der Drehmomentbegrenzung. Ist dieses Bit auf 1 gesetzt, so funktioniert der überlagerte Reglerkreis als Drehmomentbegrenzer und kann besonders an der Stromgrenze im Nenndrehzahlbereich bzw. höheren Drehzahlbereich, wo die EMK eine große Rolle spielt, lineare Drehmoment-Drehzahl-Eigenschaft des eingesetzten bürstenlosen DC-Motor erzielt werden. Der Stromregelkreis ist dem Drehzahlregler unterlagert. Bei nicht gesetztem Bit wird der Spitzenstrom begrenzt. Dieser ist aber über den gesamten Drehzahlverlauf nicht proportional zum Drehmoment.

Wie auf dem Diagramm sichtbar, ist eine lineare Drehmomentbegrenzung nur möglich wenn der eingestellte max. Strom Parameter 1/07 IL10 nicht größer ist als der Reglernennstrom. (siehe folgendes Beispiel)

Beispiel 3: Parameter 3/54 = 1

(allerdings I-Limit Parameter 1/07 IL10 größer als Nennstrom)



Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/55	KLIXEN	Motorklixon Aktiv	01	0	-

0 = Nur Meldung

1 = Antrieb Stop (Sammelstörung)

In Parameter 3/55 kann festgelegt werden ob Motorübertemperatur in TA-BL/P eine Störung auslösen soll, d.h. Motor stop, oder nur eine Meldung ausgeben soll.

Bevor Klixonfehler auftritt wird eine Vorwarnung durch einen zweiten Klixon vorgemeldet.

Gruppe/Parameter Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/5671 PPORPP70	Profibusparameter	0255	0	-

Siehe auch Parameter:

3/56 bis 3/71 Profibus Parameter:

PP(x)R für Read und PP(x)U für Write, wobei x die Wert von D bis 7 kann.

Parameter Lesen PP(x)R:

Mit dieser Funktion kann eine Automatisierungseinheit alle Informationen über den Zustand eines Stromrichtergerätes erhalten. Es sind, soweit nicht durch Schreibsperre oder Zugriffsrechte eingeschränkt, alle Parameter (Werte, Beschreibung, Texte) lesbar.

Parameter Schreiben PP(x) W:

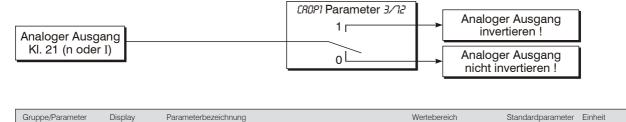
Mit dieser Funktion kann ein Master den Informationsinhalt eines Parameters ändern. Änderbar sind, soweit nicht durch Zugriffsrechte eingeschränkt, die Parameterwerte und teilweise die Parameterbeschreibungen.

Bemerkung:

Bei TA-BL/P Geräten können die Werte, die in der Profibusbeschreibung (Profibus-DP Inbetriebnahme- und Einstellanleitung) aufgelistet sind, ohne weiteres gelesen (Statusregister) oder geändert (Commandregister) werden.

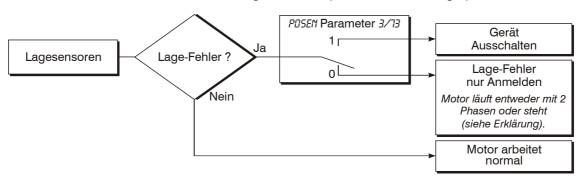
 Ω

0..1


Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter Einheit	
3/72	CROP1	Polarität Analogausgang umkehren	01	0 -	

Siehe auch Parameter: 3/47

POSEN


3/73

Der analoge Ausgang (Kl. 21), der durch den Parameter 3/47 "R05EL" = 1 oder 2 ausgewählt wird, kann durch Setzen dieses Parameters invertiert werden. Dabei ist:

Sammelstörung bei Lagesensor fehler

Tritt ein Lage-Fehler auf und das Bit "PDSEN" ist gesetzt, wird das TA-BL/P (Sammelstörung) abgeschaltet. Bei nicht gesetztem "POSEN" wird der Lage-Fehler nur gemeldet. Bei größerer Last steht der Motor, bei kleiner Last werden nur die von dem Fehler nicht betroffende Wicklungen bestromt (Motor dieselt oder nagelt).

Gruppe/Parameter 3/743/79	Display	Parameterbezeichnung Siehe Kapitel 3. Positionierung mit TA-B	Wertebereich L/P Regler	Standardparameter	Einheit
Gruppe/Parameter 3/80	Display	Parameterbezeichnung Invertiere Zählerrichtung nach Pos Aus	Wertebereich	Standardparameter	Einheit -

Ist dieses Bit gesetzt, werden bei **inaktiver** Positionierung, die Positionswerte in den Parametern 0/06 und 0/07 umgekehrt gezählt.

	Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
	3/81		Siehe Kapitel 3. Positionierung mit TA-BL	_/P Regler		
Į			1 5	, J		

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
3/82	SMPOT	Motorpoti Wert bei Netz-Aus Speichern	01	0	-

Der Parameter dient zur Speicherung des aktuellen digitalen Motorpotiwertes beim Ausschalten der Netzspannung. Der Wert des Motorpoti wird in Parameter 0/12 angezeigt.

0 = nicht Speichern

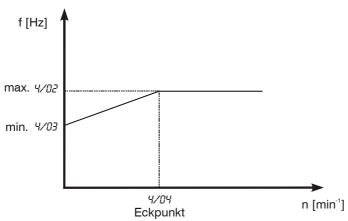
1 = Speichern

2.4 Parametergruppe 4

In dieser Parametergruppe werden die Einstellungen des TA-BL-Gerätes durchgeführt.

Eine Veränderung der Parameter in Parametergruppe -4- darf nur von Fachpersonal vorgenommen werden.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/02	CFMRX	Max. Taktfrequenz	5001800	4500	Hz


Siehe auch Parameter: 1/07, 1/09

Hier wird die maximale Taktfrequenz der Stromregelung eingestellt. Die Grenze des maximalen Gerätestromes bei den verschiedenen Betriebsarten (motorischer, generatorischer oder ServoBetrieb) wird von dieser Frequenz abhängig gemacht (siehe Parameter 1/01). Durch diese Maßnahme ist ein längeres Lebensdauer des Gerätes gewährleistet. Im Servobetrieb ist die Taktfrequenz im gesamten Drehzahlbereich gleich der maximalen Taktfrequenz. Bei Motoren mit kleinerer Stranginduktivität ist die maximale Taktfrequenz anzuheben, um den Wirkungsgrad zu verbessern und Motorgeräusche zu minimieren.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/03	CFMIN	Startfrequenz	3002500	500	Hz

Siehe auch Parameter: 4/02, 4/04

Die Startfrequenz ist die Taktfrequenz des Stromreglers im Blockierzustand des Motors. Für den unteren Drehzahlbereich, dessen Taktfrequenz durch den Parameter 4/04 bestimmt wird, dient dieser Parameter zusammen mit dem Parameter 4/02, 4/04 und der aktuellen Drehzahl für die Bildung einer Frequenzrampe, mit der die Regelung des Stromes erfolgt. Betreibt man das Antriebsystem im 4Q oder Servomode, hat die Startfrequenz keine Bedeutung. (Graphische Darstellung)

-	Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
	4/04	CRENO	Eckpunkt für max. Taktfrequenz	100800	300	min ⁻¹

Siehe auch Parameter: 4/02, 4/03

Ist die momentane Drehzahl des Motors kleiner als dieser Wert (4/04), wird der Strom mit einer Frequenz, die zwischen der in Parameter 4/03 und 4/02 festgelegten Taktfrequenz liegt, als Funktion der aktuellen Drehzahl geregelt. Steigt die aktuelle Drehzahl über den im Parameter 4/04 eingestellten Drehzahlwert, dann tritt die maximale Taktfrequenz in Kraft. Dadurch erzielt man einen besseren Wirkungsgrad des Systems. Dieser Parameter hat bei 4Q oder Servobetrieb keine Wirkung.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/05	SERVO	Servofunktion	01	0	-

Siehe auch Parameter: 1/07

Durch das aktivieren dieses Bits wird die Servofunktion aktiviert. Mit diesem Parameter wird die Schaltungsanordnung der Leistungstransistoren geändert. Dadurch bekommt der Motor einen besseren Rundlauf.

Anmerkung: - Verluste im Regler steigen an

- Stromgrenze wird um ca. 20% reduziert.

Parameterbezeichnung Wertebereich Standardparameter Einheit	arameter Display Parameterbezeichnung	Gruppe/Parameter Display
Geräteadresse 199 1 -	RDR Geräteadresse	4/06 RDR
Gerateadresse i55 i -	HUR Gerateadresse	אטא אטא

Jedes TA-BL/P-Gerät kann mit diesem Parameter adressiert werden, wodurch Sie sowohl mit einem Drive-Adminstrator oder Kommunikationsbus (z.B. PROFIBUS) kommunizieren können. Sind verschiedene Geräte mit unterschiedlichen Adressen programmiert und über einen PROFIBUS verbunden, ist man in der Lage von einer einzigen Bedienoberfläche aus (z.B. SPS) die verschiedenen Geräte anzusprechen.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/07	PW PR	Passwort für Parameter (PG 3000)	0999	0	-

Siehe auch Parameter: 4/08

Wenn Änderungen der eingestellten Parameter durch das PG3000 für unbefugte Personen unerwünscht sind, haben Sie (Fachpersonal) die Möglichkeit den Zugang zu den Parametern mit einem Passwort zu sperren.

Bemerkung:

Eine Veränderung der Parameter sollte nur von Fachpersonal vorgenommen werden.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/08	PW CN	Passwort für Control (PG 3000)	0999	111	-

Siehe auch Parameter: 4/07

Die Steuerung der TA-BL/P Geräte mittels KeyPad (PG3000) kann mit einem Passwort zugänglich gemacht werden. Ist die Steuerung mittels KeyPad nicht erwünscht, kann ist dies mit einem Passwort gesperrt werden.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/09	C DSP	Auswahl der PG 3000 Anzeige	110	1	-

Siehe auch Parameter: 0/01 - 0/10

Mit Parameter 4/09 wird ein Istwert ausgewählt der grundsätzlich nach anlegen der Netzspannung angezeigt wird. Ist die entsprechende Nummer eines Istwertes aus der Parametergruppe 0 ausgewählt, dann erscheint der erwünschte Istwert nach dem Einschalten im KeyPad. (siehe PG3000 Beschreibung Punkt 1.3).

Standardeinstellung: Motordrehzahl

Gruppe/ Parameter	Display	Bezeichnung	Werte bereich	Standard- parameter	Einheit
4/09	C DSP	"Auswahl der Anzeige", die nach dem Einschalten auf dem Display des PG 3000 erscheint.	1=Motordrehzahl 2=Strom 3=Liniengeschw. 4=Liniengeschw. 1 5=Liniengeschw. 2 6=Position (low) 7=Position (high) 8=Leitdrehzahl 9=Software Version 10=Zwischenkreisspg.	1	-

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/10	8 DSP	Bargraph-Auswahl (Balkenanzeige)	OY	2	-

Mit dem KeyPad (PG3000) ist man in der Lage eine Systemgröße als Bargraph (Balkenanzeige)darzustellen und zu beobachten. Die TA-BL/P Geräte unterstützen diese Funktion und ermöglichen momentan die Darstellung der folgenden Systemgrößen:

Gruppe/ Parameter	Display	Bezeichnung	Werte bereich	Standard- parameter	Einheit
4/10	B DSP	Bargraph-Auswahl (PG3000) (Balkenanzeige)	0=AUS 1=Drehzahl 2=Strom 3=Position (low) 4=reserviert	2	1

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter Einheit
4/11	DSP F	Faktor Liniengeschwindigkeit	19999	1000 -

Siehe auch Parameter: 0/03, 0/04, 0/05

Durch diesen Parameter kann ein Faktor für die Berechnung der Liniengeschwindigkeit aus der aktuellen Istdrehzahl eingestellt werden. Die Liniengeschwindigkeiten werden dann in 1, 1/10 und 1/100 in den Parametergruppe @ (siehe Parameter @/3, @/4 und @/5) nach folgenden Formel zur Verfügung gestellt.

Liniengeschwindigkeit z.B. = 85 m/min bei Motordrehzahl n = 1550 min

FaktorLiniengeschwindigkeit (4/11) =
$$\frac{\text{Liniengeschwindigkeit}(0/03) \times 1000}{\text{Drehzahl}(0/01)} = \frac{85 \text{ m/min} \times 1000}{1550 \text{ min}^{-1}} = \underline{54}$$

Liniengeschwindigkeit (0/03) = Liniengeschwindigkeit = 85 m/min Liniengeschwindigkeit (0/03)/10 = 8,5 m/min Liniengeschwindigkeit (0/05) = Liniengeschwindigkeit (0/03)/100 = 0,85 m/min

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter E	inheit
4/12	TRANI	Verhältnisfaktor n (Master) x Wert	164000	1000 -	

Siehe auch Parameter: 1/04, 3/13, 4/13, 4/17

Die Drehzahl des als Slave laufenden Motors kann aus der Leitdrehzahl (Masterdrehzahl) durch eine Multiplikation mit diesem Parameter in Abhängigkeit von Parameter 4/13 abgeleitet werden (siehe die folgende Gleichung). Ändert sich die Drehzahl des Masters, ändert der Slave-Antrieb die Drehzahl nach der aktiven Rampe, um eine sprungformige Drehzahländerung des Slaves zu verhindern. Falls Sie verschiedene Verhältnisse vorwählen wollen lesen Sie bitte Parameter 1/04 PR571.

$$Slave_Drehzahl = \frac{Master_Drehzahl \times TRRN1 (4/12)}{TRRN2 (4/13)}$$

Da der Wertebereich bis 64000 reicht, kann das Drehzahlverhältnis sehr genau eingestellt werden. (z.B. bei Servoanwendungen)

Ist eine Veränderung der Faktoren PRESET1, PRESET2, PRESET3 oder TRANSMISSION1 (je nach ausgewählten Verhältnisfaktor) aufgetreten, dann wird das neue Verhältnis (Zwischen Master und Slave) über die vorgewählte Rampe erreicht. Die vorgewählte Rampe ist bezogen auf 0-64000

Eine ausführliche Funktionsweise des Slave-Betriebes finden Sie in Parameter 3/13 55LRV.

Gruppe/Parameter Display	Parameterbezeichnung	Wertebereich	Standardparameter Einheit
4/13 TRA	12 Verhältnisfaktor n (Master) / Wert	164000	1000 -

Siehe auch Parameter: 4/12

Die Drehzahl des als Slave laufenden Motors kann aus der Leitdrehzahl (Masterdrehzahl) durch eine Division mit diesem Parameter in Abhängigkeit von Parameter 4/12 abgeleitet werden (siehe die Gleichung in 4/12). Beide Parameter (4/12 und 4/13) bestimmen das Drehzahlverhältnis zwischen Master- und Slaveantrieb.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter Einheit
4/14	LIMIT	Master-Slave Impulsbegrenzer	01	1 -

Siehe auch Parameter: 3/15

Der Synchronlauf zwischen Master und Slave ist garantiert, solange die Stromgrenze (siehe Parameter 1/07 und 1/09) nicht erreicht ist. Falls der Folgeantrieb (Slave) allerdings z.B. beim beschleunigen, die Stromgrenze erreicht, stehen Ihnen folgende möglichkeiten zur verfügung:

- 0 = Leitimpulse werden auch wenn der Slaveantrieb an der Stromgrenze läuft, gespeichert und aufgeholt.
- 1 = Solange Slaveantrieb an der Stromgrenze läuft werden die Leitimpulse nicht aufgeholt.

Gruppe/Parameter Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/15 RB C	D Leitfrequenz AB-Signal o. Takt/Drehrichtug	01	0	-

Siehe auch Parameter: 4/17 (Siehe auch Anschlußbild TA-BL/P Beschreibung Punkt 6.2.3)

- 0 = Zweispurige Leitfrequenz
- 1 = Einspurige Leitfrequenz und Drehrichtungssignal

Die TA-BL/P Serie bietet zwei Möglichkeiten zur Inkremtalen Sollwertverarbeitung für Folgebetrieb (Slave).

1. Leitsignal mittels zwei Rechteckfrequenzen die zueinander 90° Phasenverschoben sind. Zweispurige Leitfrequenzen haben den Vorteil, das die Drehrichtung durch die Phasenverschiebung erkannt wird.

Kanal A: Digital Eingang Klemme 33 Kanal B: Digital Eingang Klemme 34

2. Leitsignal mit einer Frequenzspur und statischer Auswahl der Drehrichtung.

Digital Eingang Klemme 34 Leitfrequenz

Digital Eingang Klemme 33 Drehrichtungssignal

Motor Motor

Rechtslauf Linkslauf

Gruppe/Parameter Disp	olay Parameterbezeichn	nung Wertebe	ereich Standardparan	neter Einheit
4/16 At	YEOR Winkelkorre	ektur <i>09</i> 9	3 0	-

Dieser Parameter ist für einen späteren Einsatz reserviert und wird in der aktuellen Software noch nicht verwendet.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/17	PPR 🖪	Impulse vom Master	19999	120	-

Siehe auch Parameter: 4/15

Mit Hilfe dieses Parameters wird die Leitdrehzahl (Masterdrehzahl) berechnet.

- 1. Bei Folgebetrieb mit A/B Signal vom Master muß die Impulszahl/Umdrehung mit 4 multipliziert werden.
- 2. Bei Folgebetrieb mit einer Frequenzspur wird die tatsächliche Impulszahl/Umdrehung eingestellt.

Beispiel:

 $A/B-Spur\,30\,Impulse/Umdrehung\times\,4=\underline{120}$

Einspurig 200 Impulse/Umdrehung \times 1 = $\underline{200}$

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/18	KPSLV	P-Verstärkung Slave (Statisch)	0100	7	%

Dieser Parameter bestimmt den proportionalen Verstärkungsfaktor der Schleppfehler-Regelung.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/19	KPAN	P-Verstärkung-Beschleunigung	0100	0	%

Dieser Parameter bestimmt den proportionalen Verstärkungsfaktor während der dynamischen Phase. Ist der elektronische Getriebe "winkelsynchron" (Parameter 4/20 = 1) eingestellt, dann gilt der Parameter für die Berechnung der internen Beschleunigungsanteil der Drehzahlistwert des Slaves.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/20	SMOD	Auswahl der Slave-Betriebsart	01	1	-

Soll der Slave nicht nur drehzahlgenau, sondern auch winkelgenau dem Master folgen, so muß die Betriebsart "Elektronisches Getriebe-winkelsynchron" gewählt werden. D.h. ist der Parameter auf 1 gesetzt, dann sind der Masterund der Slaveantrieb durch elektronische Getriebe verbunden und laufen Winkelsynchron. In dieser Betriebsart wird der Schleppfehler erfaßt und ausgeregelt. Bleibt dieses Bit ungesetzt, dann laufen der Leitantrieb und Folgeantrieb über einfache Drehzahl-Regelung.

Gruppe/Parameter	Display	Parameterbezeichnung	Wertebereich	Standardparameter	Einheit
4/21	PULSE	Zielimpulszahl	164000	7	-

Der Parameter wird in der aktuellen Softwareversion nicht ausgewertet.

Gruppe/Parameter Dis	play Parameterbezeichnui	ng Werteber	eich Standardpa	arameter Einheit
4/22 (1	DRR Dynamische	e Voreilung 099	99 0	-

Der Parameter wird in der aktuellen Softwareversion nicht ausgewertet.

3. Positionierung mit TA-BL/P Regler

Systembeschreibung:

Allgemeines

Eine ausführliche Beschreibung über die Eigenschaften und Parametrierung des TA-BL/P Reglers ist in "Inbetriebnahme- und Einstellanleitung für TA-BL/P" dargestellt. In dieser Anleitung wird zusätzlich die Eigenschaft des Reglers bei der Positionierungsaufgabe behandelt.

Positionierung

Durch den Regler der Firma TAE GmbH kann eine Positionierungsaufgabe realisiert werden. Dabei bleiben alle frühere Funktionen des Reglers erhalten.

3.1 Positionsvorgabe (Soll-Position)

Der Soll-Position (Impulszahl) kann über einen DriveAdminstrator, Key-Pad oder Profibus vorgegeben werden. Dabei ist die Soll-Position bzw. die maximale Soll-Position aus den Parametern **2/32** und **2/33** bzw. **2/30** und **2/31** wie folgt berechnet, Soll-Position =Soll-Position (highTeil)x10000+Soll-Position (LowTeil). Dadurch ist eine maximale Impulszahl von 655359999 (65535x10000+9999) realisierbar.

3.2 Positionserfassung (Ist-Position)

Die Ist-Position (Impulszahl) wird in Abhängigkeit von dem Drehzahl-Inkrementalgeber, der an dem Motor montiert ist, erfaßt. Die erfaßte Ist-Position steht immer zur Verfügung, ob der Antrieb positioniert oder als Drehzahlregler arbeitet.

3.3 Hoch- und Runterlaufkurven

Die Hoch- und Runterlauf-Kurven der Drehzahl bei der Positionierung können unabhängig (Kurvenform bzw. Laufzeit) voneinander programmiert werden. Für die Hochlaufzeit kann in Abhängigkeit von der Einstellung in Parameter 2/09 entweder die Beschleunigungszeit A (ACCEL 1/11) oder B (ACC-B 2/10) gewählt werden. Die Kurvenform der Beschleunigung wird durch den Parameter 1/10 bestimmt (s. Inbetriebnahme- und Einstellanleitung für TA-BL/P 4.1 ... 300.1). Wobei die Runterlaufkurve (Bremskurve-Typ) durch den Parameter 3/75 und die Bremszeit durch den Parameter 2/37 bestimmt wird.

Bemerkung:

Da die Bremszeit des Antriebsmotors von vielen Faktoren z.B. von der mechanischen Last, Stromgrenze des Reglers, Schwungmasse des Motors, usw. abhängt, kann bei einer Überbelastung des Antriebs während der Bremszeit die Position verfällt werden, ist die Bestimmung der optimalen Bremszeit durch diesen Parameter von großen Bedeutung.

Die Bremszeit bezieht sich aus der maximalen Positionsdrehzahl und kann durch die Einstellung von kleineren Verstärkungsfaktoren von P-Regler länger als die festgelegte Bremszeit sein.

3.4 Vorgehensweise bei der Positionierung

Ist eine Positionierung erwünscht, dann kann es wie folgt vorgegangen werden:

3.4.1 Festlegung

- a) Die maximale und die erste Sollpositionen (**2/30** bis **2/33**) werden als Impulszahlen eingegeben. Dadurch ist die Genauigkeit der Position gewährleistet.
- b) Die maximale Positionsdrehzahl wird durch den Parameter 2/34 festgelegt.

Bemerkung:

Bei der Positionierung im Slavebetrieb soll die maximale Slavedrehzahl unterhalb der maximalen Positionsdrehzahl liegen. Ist die Slavedrehzahl, während dem Slavebetrieb, gleich oder großer als die maximale Positionsdrehzahl, dann übernimmt der Positionsregler die Aufgabe und erreicht die Endposition (maximale Sollposition) mit der maximalen Positionsdrehzahl. D.h. wenn einmal der Positionsregelr gestartet ist, dann gibt es keine Möglichkeit (in diesem Positionierungsabschnitt) in den Slavebetrieb zurückzukehren.

- c) Um einen Schleppfehler zu vermeiden, ist bei der Positionierung ein Positionsfenster vorgesehen. Dabei macht der Positionsregler eine maximale Positionsdifferenz von, in diesem Parameter 2/35 festgelegten, Impulsen.
- d) Verstärkungsfaktor für den P-Regler muß in dem Parameter 3/36 festgelegt werden.
- e) Auswahl der Bremskurve 3/75, Profibus Nr. 217 Bit 9

Durch das Setzen dieses Bits kann die Art der Bremskurve zwischen einer RAMPE (0) oder Elliptische KURVE (1) (Skurvenahe) ausgewählt werden. Dabei läuft immer einer P-Regler parallel zur den gewählten Bremskurve. Die Wirkung dieses Reglers kann durch die Änderung des proportionalen Verstärkers (Parameter **2/36**, Profibus Nr. 223) genutzt werden.

Bemerkung:

Die Hochlauf-Kurve wird durch die Hilfe von Parameter 1/10 in Zusammenhang mit 1/11 oder 2/10 realisiert werden. Die Beschleunigungszeit bezieht sich aus der maximalen Drehzahl des Reglers (Parameter 1/02).

3.4.2 Referenzfahrt

Die Referenzfahrt erfolgt ohne die Positionierung. D.h. der Parameter **3/19** darf nicht gesetzt werden. In diesem Fall arbeitet der Regler ohne einen einzigen Einfluß der Positionierung (Keine Überlagerung der Positionsregler zum Drehzahlregler).

Folgende Reihenfolge bitte unbedingt einhalten

3.4.3 Positionierungsfreigabe 3/79, Profibus Nr. 217 Bit 7

Durch das Setzen dieses Bits ist der Positionsregeler dem Drehzahlregler überlagert. Der Drehzahlregler bezieht seinen Sollwert aus dem Positionsprofil des Positionsreglers.

Wird die **Positionierung mittels Digitaleingänge** realisiert, muss Parameter **3/81** gemeinsam mit **3/79** aktiviert werden.

3.4.4 Resetposition 3/76, Profibus Nr. 217 Bit 12

Durch das Setzen dieses Bits werden die interne Soll- und Istpositionen (nicht die Werte von den Parameter **2/30** bis **2/33**) bzw. alle Steuer- und Statussignale der Positionierung mit 0 initialisiert.

Bemerkung:

Da die erste Sollpositionsberechnung und die internal Freigabe für die Positionierung in der Phase der Drehrichtungsfestlegung (**3/17**, Profibus Nr. 217 Bit 13) erfolgt, soll das Resetpositionsbit vor dem Parameter (**3/17**, Profibus Nr. 217 Bit 13) deaktiviert werden.

3.4.5 Bestimmung der Drehrichtung 3/77, Profibus Nr. 217 Bit 13

Die Drehrichtung wird in Parameter 3/05 ,Profibus-Nr. 86 Bit 4 bestimmt. 0=Rechtslauf , 1=Linkslauf (Auf Motordrehrichtung bezogen)

Durch das Setzen dieses Bits (Par. **3/17** bzw PB-Nr 217 Bit 13 wird einmal vor dem Beginn der Positionierfahrt die gewünschte Vorwärtzdrehrichtung des Antriebsmotors in Abhängigkeit der Bewegungsrichtung des Materials aus Par. **3/05** bzw PB.Nr 86 Bit 4 übernommen. Nach der Festlegung ist Par. **3/17** bzw PB-Nr. 217 Bit 13 zu deaktivieren. (min Einschaltdauer 100ms) Die Umkehrung der Drehrichtung des Antriebsmotors wird von dem Positionsregler übernommen.

Bemerkung:

Die Drehrichtung des Antriebsmotors im Slavebetrieb des Reglers ist unabhängig von diesem Bit. Deshalb soll auch einmal die Drehrichtung des Slaves in Abhängigkeit des Masters vor dem Beginn der Positionierung festgelegt werden. Dabei hat der Antriebsmotor sowohl bei der Positionierung als auch im Slavebetrieb die gleiche Drehrichtung.

In diesem Abschnitt wird die erste neue Soll-Position berechnet.

3.4.6 Gehe zur ersten Position 3/74, Profibus Nr. 217 Bit 8

Dieses Bit gibt den ersten Befehl für die Positionierung. Ist die Position erreicht, dann wird ein Position_Ok Signal an der ausgewählten Klemme der digitalen Ausgänge 3/37 bis 3/47 durch Eingeben den Wert 11 (s. Parameterbeschreibung) signalisiert. Für Profibusanwendung wird dieses Bit in Profibus Nr. 218 Bit 10 signalisiert. Dieses Position_Ok Bit wird bei jeder erreichten Position gesetzt und beim Anfangen jeder Art der Positionierung auf 0 zurückgesetzt. Ist aber die Position überschritten, dann wird ein Position_NotOk Signal an der ausgewählten Klemme der digitalen Ausgänge 3/37 bis 3/47 durch Eingeben den Wert 13 signalisiert. Für Profibusanwendung wird dieses Bit in Profibus Nr. 218 Bit 3 signalisiert.

Nach diesem Zustand kann der Antrieb zum Slavebetrieb oder zur Anfangsposition gefahren werden.

3.4.7 Gehe zur Endposition in Slavebetrieb 3/13, Profibus Nr. 87 Bit 6

Nur bei Positionierung im Slavebetrieb

Dieses Bit aktiviert den Slavebetrieb des Reglers immer in gleiche Richtung nach dem erreichten ersten Position. Dieses Bit darf und kann nicht die Drehrichtung des Antriebsmotors ändern. Die Drehrichtung wird automatisch beim Setzen das Bit 14 in dem Profibus Nr. 217 und beim Verlasen dieses Bereiches (beim Zurücksetzen das Slavebit) umkehrbar. Da der Antrieb im Slavebetrieb zu der maximalen Sollposition fährt, kann nur durch das aktivieren von Profibus Nr. 217 Bit 14 zurückgefahren werden.

3.4.8 Gehe zur Anfangsposition 3/78, Profibus Nr. 217 Bit 14

Durch dieses Bits und Zürücksetzen von "gehe in die Erste Position" wird die interne Sollposition automatisch auf 0 gesetzt und der Antrieb läuft in umgekehrter Richtung zu dem Ausgangspunkt zurück

3.5 Positionierung durch die Änderung der Soll-Position

Anders als bei der oben genannten Funktionsweise der Positionierung, kann die Positionierung durch Änderung der Soll-Position realisiert werden.

Dabei bleibt das Bit **3/74** immer gesetzt. Die Drehrichtung wird automatisch je nach Größe des Positionierungswert intern festgelegt.

Bemerkung:

Die Prozeduren von 2.5.1 bis 2.5.6 sollen auch bei dieser Betriebsweise durchgeführt werden. Dann ist "Gehe zur ersten Position Parameter **3/14**, Profibus Nr. 217 Bit 8" zu aktivieren. Die Positionierung erfolgt nach dem Vorgang durch die Wertänderung der Soll-Position.

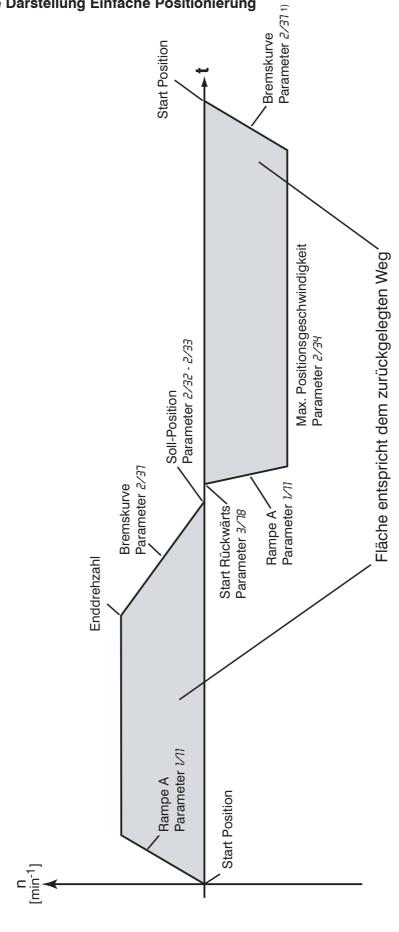
Soll-Position änderung während der Positionierung:

Eine Soll-Positionänderung ist während der Positionierung oder beim Stillstand des Motors möglich. Hier kann man verschiedene Fälle unterscheiden, wann die Änderung vorgenommen wurde,

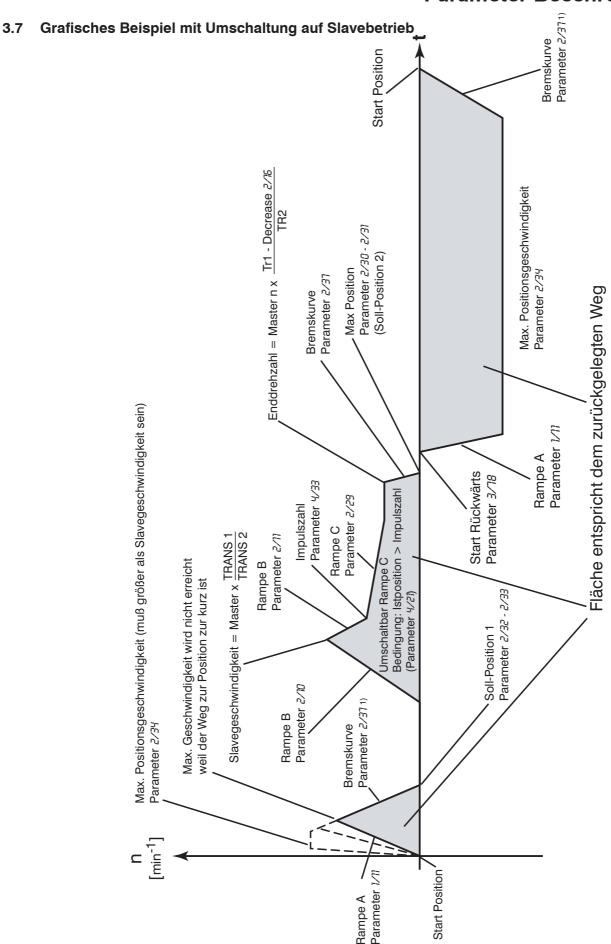
- 1.Fall, Beim Hochlauf
- 2.Fall, Vor dem Bremsvorgang
- 3.Fall, Während dem Bremsvorgang (Bremsvorgang durch Soll-Positionsänderung)
- 4.Fall, Beim Stillstand

z.B.

- A Anfangsposition
- B Endposition
- C Neue Position


1. A < C < B,

ist die neue Soll-Position kleiner als die ursprünglich eingestellte Position, dann bremst der Antrieb den Motor mit der, in Par. 1/12 oder 2/11, eingestellten Zeit zur Drehzahl = 0 und läuft in umgekehrter Richtung zur der neuen Position.


Bemerkung:

alle Änderungsvorgänge laufen mit den programmierten Rampen, so das kein Drehmomentstoß auf den Antrieb bzw. die Maschine wirkt.

3.6 Grafische Darstellung Einfache Positionierung

1) Ist die Bremszeit zu kurz, kann der Antrieb seine Position nicht erreichen und geht in Haltefunktion. Antrieb kann aber zur Position (Start) zurück gefahren werden.

1) Ist die Bremszeit zu kurz, kann der Antrieb seine Position nicht erreichen und geht in Haltefunktion. Antrieb kann aber zur Position (Start) zurück gefahren werden.

4. Übersichtstabellen Parameter

4.1 Parametergruppe 1

Gruppe/ Parameter	Display	Bezeichnung	Werte bereich	Standard- parameter	Einheit
1/02	MRXS	Maximale Drehzahl	100 - 6000	1000	min ⁻¹
1/03	MINS	Minimale Drehzahl	0 - 6000	0	min ⁻¹
1/04	PRST1	Festdrehzahl 1 / Drehzahlverhältnis 1	0 - 64000	0	-
1/05	PRST2	Festdrehzahl 2 / Drehzahlverhältnis 2	0 - 64000	0	-
1/06	PRST3	Festdrehzahl 3 / Drehzahlverhältnis 3	0 - 64000	0	-
רסע	IL1Q	Maximaler Strom bei mot. Betrieb 1Q	0,1 - I-max.	I-max.	Α
1/08	YQEN	Generatorischer Betrieb, Freigabe	0 oder 1	0	-
1/09	ILYQ	Stromgrenze, Generatorbetrieb	0,1 - I-max.	I-max.	Α
1/10	RAMP	Drehzahlrampentyp	0=Sprung 1=Rampe 2=S-Kurve	1	-
וועו	ACCEL	Beschleunigungszeit A (Hochlauf)	0,1 - 599,9	10,0	s
1/12	DECEL	Verzögerungszeit A (Runterlauf)	0,1 - 599,9	10,0	s
VB	LERDE	Geführte Verzögerung bei Reglersperre	0 oder 1	0	-
1/14	BRADE	0,5s Haltemoment bei n<10 min ⁻¹	0 oder 1	0	-
1/15	DELOF	Reglersperre bei Sollwert=0 & n=0	0 oder 1	0	-
1/15	P AMP	Drehzahlregler P- Verstärkung	0 - 100	5	%
רועו	I AMP	Drehzahlregler, Integral-Anteil	0 - 100	4	%
1/18	SIOP	Wirkungsbereich I-Anteils beim n-Regler	1 - 255	255	min ⁻¹
1/19	SAVE	Parameter in EEPROM speichern	0 oder 1	0	-

4.2 Parametergruppe 2

Gruppe/ Parameter	Display	Bezeichnung	Wertebereich	Standard- parameter	Einheit
2/02	STORD	Standardparameter lesen	0 oder 1	-	-
2/03	RATSP	Motor-Nenndrehzahl (Bei BL-N-Motoren die kleinere Drehzahl angeben)	0 - 6000	-	min ⁻¹
2/04	POLES	Motor-Polzahl	2 - 32	-	-
2/05	PPR	Impulszahl des Motordrehzahlgebers x4	1 - 9999	-	-
2/06	MRACU	Motor-Nennstrom	1,0 - 3000,0	-	Α
2/07	MPECU	Motor-Spitzenstrom	1,0 - 3000,0	-	Α
2/08	OCTIM	Überstromzeit (bei n <300 min ⁻¹)	0 - 200	80	S
2/03	SETAB	Auswahl Drehzahlrampe A oder B	0 = Rampe A 1 = SWTR 3 = Dir 4 = Rampe B 5 = Motorpoti 6 = Set B 7 = Slave set B	0	-
2/10	ACC B	Beschleunigungszeit B (Hochlauf)	0,1 - 599,9	180,0	S
2/11	DEC B	Verzögerungszeit B (Runterlauf)	0,1 - 599,9	180,0	S
2/12	PHROV	Phase advance aktivieren	0 oder 1	0	-
2/13	PHADR	Phase advance bei Nenndrehzahl	0 - 99	30	%
2/14	PHADN	Phase advance bei Maximaldrehzahl	0 - 99	50	%
2/15	INER	Drehzahl- / Multiplikatoranhebung	0 - 9999	0	min ⁻¹ /-
2/16	DECR	Drehzahl- / Multiplikatorabsenkung	0 - 9999	0	min ⁻¹ /-
2/17	FINE	Drehzahlfeinabstimmung	0 - 3	0	1/4 min ⁻¹
2/18	SWTR	Drehzahlmeldung	10 - 6000	100	min ⁻¹
2/19	1L20	Meldeverzögerung, Stromgrenze erreicht	1 - 9999	1	S
2/20	<i>CODO</i>	Feste Konfiguration der Digitalausgänge	0 oder 1	0	-
2/21	DIRAN	Drehrichtungsumkehr bei neg. Sollwert	0 oder 1	0	-
2/22	4NR	Analogeingang 1, 0-20mA oder 4-20mA	0 oder 1	0	-
2/23	CLT1	Drehmomentgrenze, Zeitkonstante	0,01 - 300,00	0,01	S
2/24	חודעט	Unterspgabschaltung, Verzögerung	0,0 - 3000,0	0,1	S
2/25	OV_4Q	Maximale Zwischenkreisspannung	100 - 1500	900	V
2/26	PTQL	Drehmomentgrenze Programmierbar	0 - 100,0	100,0	%
2/27	MPTUL	Motorpoti Verhältnisfaktor Begrenzung (Auf)	0 - 100	0	%
2/28	MPTDL	Motorpoti Verhältnisfaktor Begrenzung (Ab)	0 - 100	0	%

Parameter 2/29 bis 2/37 sind optionale Parameter siehe Kap. 4.5

4.3 Parametergruppe 3

Gruppe/ Parameter	Display	Bezeichnung		Wertebereich	Standard parameter
3/02	SRES	Reset-Störung			2 (KL.2)
3/03	SRUN	Regler-Freigabe			3 (KL.3)
3/04	SPRS1	Festdrehzahl 1 / Drehzahlverhältnis 1			4 (KL.4)
3/05	SDIR	Drehrichtungsumkehr (Masterbetrieb)		5 (KL.5)
3/06	SHOLD	Schnellhalt			6 (KL.6)
3/07	SPRS2	Festdrehzahl 2 / Drehzahlverhältnis 2	2		7 (KL.7)
3/08	SMOT	Motorpotentiometer EIN / AUS			8 (KL.8)
3/09	SUP	Motorpotentiometer aufwärts			9 (KL.9)
3/10	SDOWN	Motorpotifunktion abwärts			10 (KL.10)
3/11	SINC	Drehzahl- / Drehzahlverhältnisanheb	ung	0 = AUS	11 (KL.11)
3/12	SDEC	Drehzahl- / Drehzahlverhältnisabsenl	1 = EIN	12 (KL.12)	
3/13	SSLAV	Master- / Slavebetrieb		2 bis 13 =	13 (KL.13)
3/14	SSPER	Drehzahlistwertfehler unterdrücken	Klemmen	0	
3/15	SSYNC	Winkelsynchron / Drehzahlsynchron	am TA-BL/P	1	
3/16	SANG	Winkelkorrektur			0
3/17	SICW	Endschalter in Uhrzeigersinn (cw)			0
3/18	SICCW	Endschalter gegen Uhrzeigersinn (co	cw)		0
3/19	SSETB	Anwahl Rampe A oder B			0
3/20	SLDIR	Drehrichtungswechsel bei Folgeantri	eben		0
3/21	STQL	Externe Drehmomentgrenze			0
3/22	SSER	Externe Fehlerabschaltung			0
3/23	SSDC	Reglerendstufe Inaktiv			0
3/24	STLRP	M-limit Analog / Programmierbar			0
3/25	IPL2		KL.2	0=Eingang ist aktiv und wird beim Anlegen von	1
3/26	IPL3	Eingangslogik der Klemmen 2 bis 13 (Polarität umkehren)	KL.3	+24V inaktiv 1=Eingang ist	1
3/27	IPLY		KL.4	inaktiv und wird beim Anlegen von +24V aktiv	1

Gruppe/ Parameter	Display	Bezeichnung		Wertebereich	Standard- parameter		
3/28	IPL5		KL.5			1	
3/29	IPL6		KL.6			1	
3/30	IPL7	KL.7 und		0=Eingang ist aktiv und wird beim		1	
3/31	IPL8			Anlegen von +24V inaktiv		1	
3/32	IPL9	Klemmen 2 bis 13	KL.9	+24V aktiv		1	
3/33	IPL10	(Polarität umkehren)	KL.10			1	
3/34	IPL11		KL.11			1	
3/35	IPL12		KL.12			1	
3/38	IPL13	KL.13			1		
3/37	SD48	Funktion Relais 1	KL.48	0=AUS 1=Störung 2=Verzög. Stromgr.	4		
3/38	5 <i>0</i> 47	Funktion Relais 2	KL.47	2=verzog. stromgr. 3=Drehzahl erreicht 4=Betriebsbereit -5=Betrieb 6=Drehzahlmeldung 7=n > 9 min ⁻¹ -8=Stromgrenze 9=Motornennstr. überschr. 10=Reserve		änge in den ng.	
3/39	SOK45	Funktion Digitalausgang 1	KL.45			alausg Werte edeutu	
3/40	SOKYY	Funktion Digitalausgang 2	KL.44			ation der Digitalausgänge = 1), sind die Werte in den s 3/46 ohne Bedeutung.	
3/41	50K43	Funktion Digitalausgang 3	KL.43			Ist die feste Konfiguration d aktiv (Parameter 2/20 = 1), s Parametern 3/37 bis 3/46	
3/42	PD48	Ausgangslogik Relais 1	KL.48			nfigur r 2/20 3/37 b	
3/43	PDYT	Ausgangslogik Relais 2	KL.47		1	ste Ko amete etern (
3/44	POK45		KL.45	0 oder 1		die fe / (Para 'aram	
3/45	POKYY	Ausgangslogik Optokopplerausgänge	KL.44			lst aktiv P	
3/46	POK43		KL.43				
3/47	ROSEL	Funktion Analogausgang		1=Motordrehzahl 2=Motorstrom		1	
3/48	RSEL1	Drehzahlsollwert mit Rampe		0=AUS 1=Analogeingang 1 2=Analogeingang 2 3=(nicht belegt)		1	
3/49	RSEL2	Drehzahlsollwert ohne Rampe				0	
3/50	RSEL3	Sollwert, Drehmoment limit				0	
3/51	RSELY	Quelle max. Positionier-Drehzahl				0	
3/52	RSEL5	Reserve Analoganwendungen Betrieb Drehmoment-Begrenzung Motorklixon Aktiv				0	
3/53	RSEL6					0	
3/54	TRQEN					0	
3/55	KLIXEN					0	

Gruppe/ Parameter	Display	Bezeichnu	ng		Wertebereich	Standard- parameter
3/58	PPOR	- -	0	Lesen		0
3/57	PPOW		0	Schreiben		0
3/58	PP1R		1 Lesen		0	
3/59	PP1W		1	Schreiben	Profibus-Nr. 0 bis 255	0
3/60	PP2R		2	Lesen		0
3/61	PP2W		2	Schreiben		0
3/62	PP3R		3	Lesen		0
3/63	PP3U	Profibus Parameter	3	Schreiben		0
3/64	PPYR	Flolibus Falaillelei	4	Lesen		0
3/85	PPYW		4	Schreiben		0
3/66	PP5R		5	Lesen		0
3/67	PP5W		5	Schreiben		0
3/68	PP6R		6	Lesen		0
3/69	PP6W		6	Schreiben		0
3/70	PP7R	- -	7	Lesen		0
3/71	PP7W		7	Schreiben		0
3/72	CROP1	Polarität Analogausgang umkehren		0=Aus 1=Ein	0	
3/73	POSEN	Sammelstörung bei Lagesensor fehler		0=Aus 1=Ein	0	
3/80	INVCD	Invertiere Zählerrichtung nach Pos Aus		0=Aus 1=Ein	0	
3/82	SMPOT	Motorpoti Wert bei Netz-Aus Speichern		0=Aus 1=Ein	0	

Parameter 3/74 bis 3/79, 3/81 sind optionale Parameter siehe Kap. 4.5

Eine Veränderung der Parameter in Parametergruppe -4- darf nur von Fachpersonal vorgenommen werden.

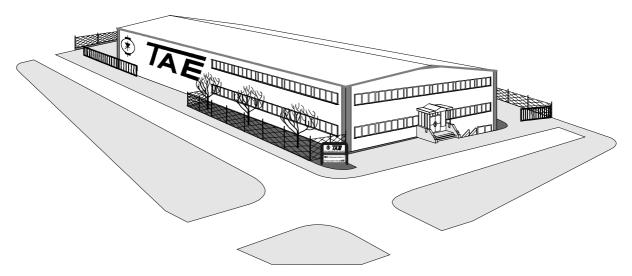
4.4 Parametergruppe 4

Gruppe/ Parameter	Display	Bezeichnung	Werte bereich	Standard- parameter	Einheit
4/02	CFMAX	Max. Taktfrequenz	500 bis 18000	4500	Hz
4/03	CFMIN	Startfrequenz	300 bis 2500	500	Hz
4/04	CREND	Eckpunkt für max. Taktfrequenz	100 bis 800	300	min ⁻¹
4/05	SERVO	Servofunktion	0 oder 1	0	-
4/06	ADR	Geräteadresse	1 bis 99	1	-
4/07	PW PR	Passwort für Parameter (PG3000)	0 bis 999	0	-
4/08	PW CN	Passwort für Control (PG3000)	0 bis 999	111	-
4/03	C DSP	Auswahl der Anzeige, die nach dem Einschalten auf dem Display des PG 3000 erscheint.	1=Motordrehzahl 2=Strom 3=Liniengeschw. 4=Liniengeschw. 1 5=Liniengeschw. 2 6=Position (low) 7=Position (high) 8=Leitdrehzahl 9=Software Version 10=Zwischenkr.spg.	1	-
4/10	8 DSP	Bargraph-Auswahl (PG3000) (Balkenanzeige)	0=AUS 1=Drehzahl 2=Strom 3=Position (low) 4=reserviert	2	-
4/11	DSP F	Faktor Liniengeschwindigkeit 1,000	1 bis 9999	1000	-
4/12	TRANI	Verhältnisfaktor n (Master) x Wert	1 bis 64000	1000	-
4/13	TRAN2	Verhältnisfaktor n (Master) / Wert	1 bis 64000	1000	-
4/14	LIMIT	Master-Slave Impulsbegrenzer bei Stromgrenze	0 oder 1	1	-
4/15	AB CD	Leitfrequenz AB-Signal oder Takt/Drehrichtung	0 oder 1	0	-
4/16	RNCOR	Winkelkorrektur	0 bis 99	0	-
4/17	PPR M	Impulse vom Master	1 bis 9999	120	-
4/18	KPSLV	P-Verstärkung Slave (Statisch)	0 bis 100	1	%
4/19	KPAN	P-Verstärkung-Beschleunigung	0 bis 100	0	%
4/20	SMOD	Auswahl der Slave-Betriebsart	1=ElektrGetriebe	1	-
4/21	PULSE	Zielimpulszahl	1 bis 64000	1	-
4/22	CORR	Dynamische Voreilung	0 bis 9999	0	-

4.5 Parameter zur Option Positionierung

Gruppe/ Parameter	Display	Bezeichnung	Werte bereich	Standard- parameter	Einheit
2/29	DEC_C	Verzögerung Rampe C	0,1 bis 599,9	180,0	s
2/30	PHNAX	Maximale Sollposition x10000	0 bis 65535	0	-
2/31	PLMRX	Maximale Sollposition x1	0 bis 9999	0	-
2/32	PHIGH	Sollposition x10000	0 bis 65535	0	-
2/33	PLOW	Sollposition x1	0 bis 9999	0	-
2/34	MPOSP	Maximale Drehzahl der Positionierung	1 bis 6000	100	min ⁻¹
2/35	WINPO	Positionsfenster (Geberimpulse x4)	1 bis 255	30	-
2/36	KPP_P	Proportionale Verstärkungsfaktor für Positionierung	1 bis 255	75	-
2/37	<i>ADJBC</i>	Bremskurve justieren	0,1 bis 100,0	1,0	s

3/74	STPOS	Gehe zur ersten Position	0=OFF 1=ON 2 bis 13= klemmen am TA-BL/P	0	-
3/75	BRCUR	Bremskurventyp: Linear/S-Kurve		0	-
3/76	REPOS	Reset Position		0	-
3/11	<i>REFPO</i>	Definiere Positionsrichtung		0	-
3/78	RUKPO	Gehe zur Anfangsposition		0	-
3/79	ENPOS	Positionierung freigeben		0	-
3/81	F_J0G	Digitale Sollwert freigabe		0	-


Ab Version BL60430:

Bemerkung:

Die Quelle der maximalen Drehzahl der Positionierung kann digital oder analog, mit Parameter 3/51, vorgewählt werden.

3/51 = 0 Digital = (2/34) Die maximale Drehzahl der Positionierung über Feldbussysteme 3/51 = 1 Analogeingang 1 Die maximale Drehzahl der Positionierung über Analogeingang 1 Die maximale Drehzahl der Positionierung über Analogeingang 2

Die Parameter 3/74 bis 3/79 und 3/81 sind über Digitaleingänge ansteuerbar.

Hauptsitz und Vertretungen

Hauptsitz -

Deutschland

Lieferanschrift:

TAE Antriebstechnik GmbH Am Kappengraben 20 D-61273 Wehrheim

Postanschrift:

TAE Antriebstechnik GmbH Postfach 1163 D-61268 Wehrheim

E-mail:

info@tae-antriebstechnik.de

Internet:

http://www.tae-antriebstechnik.de

Telefon: +49 60 81 95 13-0 Fax Einkauf: +49 60 81 5 94 72 Fax Verkauf: +49 60 81 98 00 52

Vertretung - Deutschland

Erhardt Antriebstechnik GmbH Silcherstraße 8

D-71691 Freiberg a.N.

Telefon: +49 71 41 7 23 79 Fax: +49 71 41 70 74 57

Auslandsvertretungen

BelgienESCO Transmission

Culliganlaan, 3
B-1831 Machelen Diegem
Telefon: +32 2 715 65 60

Fax: +32 2 721 28 27

Dänemark

Thrige Electric A/S Energivej 25 DK-5260 Odense S

Telefon: +45 63 95 11 11 Fax: +45 63 95 11 12

Finnland

Finndrive Qy Sirrikuja 4 E FIN-00940 Helsinki

Telefon: +358 9 342 1543 Fax: +358 9 342 1548

Frankreich

SB Automation
ZAE les Glaises
3, allée des garays
F-91872 Palaiseau Cedex
Telefon: +33 1 69 32 01 03
Fax: +33 1 69 32 01 04

Niederlande

Elektro Drive B.V. 1e Dwarstocht 14 NL-1500 EB Zaandam

Telefon: +31 75 61 66 656 Fax: +31 75 61 79 500

Niederlande

GTI-Elektroprojekt Sluispolder Vej 15 NL-1505 EK Zaandam

Telefon: +31 75 68 11 111 Fax: +31 75 63 54 003

Schweiz

Hardmeier Control Vogelsangstrasse 11 CH-8307 Effretikon

Telefon: +41 52 343 45 17 Fax: +41 52 343 31 02

Südamerika

IFAVEN, C. A. Apartado 120

Postal 2101 Maracay, Aragua Venezuela

Telefon: +58 243 553 2330 Fax: +58 243 553 2330

Taiwan

An Fam Enterprise Co., Ltd. 12 Fl. No. 133 Sec. 1, Pei Hsin Road

Hsin Tien City, Taipei

Telefon: +2 2915-5908 Fax: +2 2915-5912

USA

MSI - Motor Systems, Inc 501 TechneCenter Drive Milford Ohio 45150

Telefon: +1 513 576 1725 Fax: +1 513 576 1915